Contents

Chapter 3 - Analysis of Current Water Supplies 3-1
3.1 Introduction 3-1
3.2 Identification of Groundwater Sources. 3-1
3.2.1 Groundwater Aquifers 3-1
3.2.2 Groundwater Use Overview 3-6
3.2.3 Aquifer Conditions 3-6
3.2.3.1 Carrizo-Wilcox Aquifer 3-8
3.2.3.2 Gulf Coast Aquifer 3-8
3.2.3.3 Queen City and Sparta Aquifers 3-9
3.2.3.4 Yegua-Jackson Aquifer 3-9
3.2.3.5 Brazos River Alluvium 3-9
3.2.4 Subsidence Effects 3-9
3.2.5 Groundwater Availability in Fort Bend and Montgomery Counties 3-10
3.2.6 Public Supply Groundwater Usage 3-17
3.2.7 Industrial Groundwater Usage 3-17
3.2.8 Agricultural Groundwater Usage 3-17
3.2.9 Groundwater Drought Susceptibility 3-23
3.2.10 Groundwater Availability Summary 3-23
3.3 Identification of Surface Water Sources. 3-23
3.3.1 Available Surface Water. 3-24
3.3.1.1 Neches-Trinity Coastal Basin 3-27
3.3.1.2 Trinity River Basin 3-27
3.3.1.3 Trinity-San Jacinto Coastal Basin 3-29
3.3.1.4 San Jacinto River Basin 3-30
3.3.1.5 San Jacinto-Brazos Coastal Basin 3-31
3.3.1.6 Brazos River Basin 3-31
3.3.1.7 Brazos-Colorado Coastal Basin 3-32
3.3.1.8 Lake Sam Rayburn 3-32
3.3.1.9 Local Supplies 3-32
3.3.2 Discusion of Modeling Results 3-32
3.3.3 Surface Water Drought Susceptibility 3-33
3.3.4 Surface Water Conveyance Systems 3-35
3.3.5 Previously Studied Potential Reservoir Sites 3-38
3.3.6 Legal and Regulatory Factors 3-38
3.3.7 Environmental Uses and Requirements 3-39
3.3.7.1 Bay and Estuary Inflows 3-40
3.3.7.2 Water Quality 3-42
3.3.7.3 Unique River and Stream Segments 3-44
3.3.8 Navigational Uses. 3-44
3.3.9 Recreational Uses 3-44
3.4 Total Water Supply 3-46
3.4.1 Water Supplies Available by City and Category 3-46
3.4.2 General Methodology for Assigning Resources to WUGs 3-49
3.4.3 Groundwater Allocation 3-49
3.4.3.1 Counties With Adequate Groundwater Resources 3-49
3.4.3.2 Counties With Inadequate Groundwater Resources 3-49
3.4.4 Surface Water Allocation 3-52
3.4.4.1 Municipal Contracts Allocation 3-54
3.4.4.2 Manufacturing Supplies 3-67
3.4.4.3 Irrigation Supplies 3-69
3.4.4.4 Mining Supplies 3-72
3.4.4.5 Steam-Electric Supplies 3-72
3.4.5 Wholesale Water Providers 3-73

List of Tables

Table 3-1_Municipal Groundwater Demand From 2000 TWDB Data
Table 3-2_Industrial Groundwater Demand From 2000 TWDB Data
Table 3-3_Agricultural Groundwater Demand From 2000 TWDB Data
Table 3-4_Current Surface Water Supply Sources Available in Region H
Table 3-5_Water Supply Reservoir Capacities
Table 3-6_Ownership of Trinity River Basin Supplies
Table 3-7_Typical Drought Triggers for Region H Supplies
Table 3-8_Major Environmental Water Rights in Region H
Table 3-9_Environmental Water Needs for Galveston Bay
Table 3-10_Water Quality Rights in Region H
Table 3-11_Major Recreational Water Rights in Region H
Table 3-12_Summary of Water Supply Available for Region H for Study Years 2010, 2030, and 2060
Table 3-13_Available Supply by Wholesale Water Provider within Region H for Study Years 2010, 2030, and 2060
Table 3-14_Summary of Supplies Available to Region H Wholesale Water
Table 3-15_Surface Water Supply by Categories of Water Use in Each County and Basin

Table 3-16_Groundwater Supply by Categories of Water Use in Each County and Basin
Table 3-17_Reuse Supply by Categories of Water Use in Each County and Basin

List of Figures

Figure 3-1 Major Groundwater Aquifers
Figure 3-2 Minor Groundwater Aquifers
Figure 3-3 Aquifer Outcrop Areas
Figure 3-4 East Fort Bend County - Static Water Levels in Wells
Figure 3-5 Southwest Fort Bend County - Static Water Levels in Wells
Figure 3-6 North Fort Bend County - Static Water Levels in Wells
Figure 3-7 Central Fort Bend County - Static Water Levels in Wells
Figure 3-8 Major Surface Water Sources
Figure 3-9 Raw Surface Water Conveyance Systems
Figure 3-10 Seasonal and Restrictive Waterways in Region H

List of Appendices

Appendix 3A Current Water Supply Sources Available During Drought of Record Conditions
Appendix 3B WRAP Input Files
Appendix 3C Upper Basin Return Flow and Lake Livingston Firm Yield Analysis
Appendix 3D Region H Drought Contingency Plans

Appendix 3E Potential Reservoir Sites
Appendix 3F Water Quality Basin Maps
Appendix 3G Region H Recreational Use Information

Appendix 3H Current Water Supplies Available to Region H by City and Category
Appendix $31 \quad$ Current Water Supplies Available to WUGs in Region H by Wholesale Water Provider
Appendix 3J Current Surface Water Supplies by Category of Use by Basin by Wholesale Water Provider

This Page Intentionally Left Blank

Chapter 3 - Analysis of Current Water Supplies

3.1 Introduction

As presented in Chapter 1, groundwater resources in Region H consist of two major aquifers and four minor aquifers. The two major aquifers are the Gulf Coast aquifer and the Carrizo-Wilcox aquifer; four minor aquifers present are the Sparta, Queen City, Yegua-Jackson, and Brazos River alluvium aquifers.

Much of the regional water demand is supplied by surface water. Of the total year 2000 water demand over 70 percent, or 1,267,410 acre-feet, was supplied by surface water as found in the TWDB Year 2000 Water Use Survey. By 2004, surface water use reported to the TWDB increased to approximately $1,240,000$ acre-feet, accounting for 70 percent of the total water used in Region H . Surface water supplies are obtained from the Lake Livingston-Wallisville Salt Water Barrier System on the Trinity River, Lake Conroe and Lake Houston on the San Jacinto River, the Brazos River Authority/U.S. Army Corps of Engineers (BRA/COE) System, ROR flows from the Trinity, Brazos, and San Jacinto Rivers, the corresponding coastal basins, and some smaller tributaries and reservoirs. Groundwater supplies the remaining 30 percent of the water.

This chapter summarizes the results of Task 3, and describes the resources available to the region and their allocation to Water User Groups (WUGs) throughout Region H. Also, to provide consistency and facilitate the compilation of the different regional plans, the Texas Water Development Board (TWDB) required the incorporation of this data into a standardized online database referred to as TWDB DB12. Tables that contain this information are identified below and are located in the appendices accompanying this chapter.

- Appendix 3A - Current Water Supply Sources Available During Drought of Record Conditions
- Appendix $3 H$ - Current Water Supplies Available to Region H by City and Category
- Appendix 3 I - Current Water Supplies Available to Region H by Wholesale Water Provider

Some of the information contained within this chapter is based on information published in Chapter 1

- Description of the Region. For a complete and detailed list of sources, see Appendix 1A, references for Chapter 1.

3.2 Identification of Groundwater Sources ${ }^{1}$

3.2.1 Groundwater Aquifers

As presented in Chapter 1, groundwater resources in Region H consist of two major aquifers and four minor aquifers. The two major aquifers are the Gulf Coast aquifer and the Carrizo-Wilcox aquifer, with the Gulf Coast aquifer furnishing the majority of groundwater in the region south of and within Waller and Walker Counties. The four minor aquifers present are the Sparta, Queen City, YeguaJackson, and Brazos River alluvium.

[^0]The Carrizo-Wilcox is the main aquifer in the northern part of Region H in Leon County and the northern portion of Madison County. The aquifer is composed of, in ascending order, the Wilcox Group and the Carrizo Formation. Because they are weakly connected hydraulically, they are generally described as one major aquifer. However, for groundwater flow modeling purposes in the Central Queen City Sparta Groundwater Availability Model developed by TWDB, the Wilcox aquifer is modeled as three separate layers and the Carrizo as one layer. The Wilcox Group is composed of alternating beds of sand, sandy clay, and clay with locally interbedded gravel, silt, clay, and lignite. The Carrizo Formation is a uniform, well sorted sand that contains a few very thin beds of clay; the aquifer dips downward to the southeast at about 70 to 100 feet per mile. The Carrizo-Wilcox aquifer supplies groundwater for domestic, municipal, manufacturing, and agricultural uses in Leon and Madison Counties. Figure 3-1, Major Groundwater Aquifers, provides a map showing the location of the aquifer.

A groundwater availability model (GAM) was developed for the Carrizo-Wilcox, Queen City and Sparta aquifers in the area of Leon and Madison Counties, and the model is described in a report prepared by the TWDB entitled Groundwater Availability Models for the Queen City and Sparta Aquifers, October 2004. The model divides the Carrizo-Wilcox aquifer into four layers, which are the Carrizo Sand or Carrizo Formation and the Calvert Bluff, Simsboro and Hooper Formations of the Wilcox Group. The model also has layers for the Queen City aquifer and the Sparta aquifer. The main layers of the model that provide substantial amounts of water are the Carrizo Sand and the Simsboro, with a smaller amount of water provided by the Sparta aquifer. Utilization of the model provides an additional method to evaluate the groundwater resources in the northern part of Region H.

The Gulf Coast aquifer consists of four general water-producing units. The geologically youngest unit is the Chicot aquifer, followed by the Evangeline aquifer, the Jasper aquifer, and the Catahoula Formation. The Chicot and Evangeline aquifers are the more prolific water-producing units in the Gulf Coast aquifer followed by the Jasper aquifer and the Catahoula Formation. The Gulf Coast aquifer extends from the Gulf Coast to approximately 100 to 120 miles inland in Walker and Trinity Counties. The units are composed of alternating beds of sand, silt, and clay; shale can occur at deeper depths at and below the base of the Evangeline aquifer. Formation beds vary in thickness and composition and the areal extent of individual beds normally cannot be traced over extended distances. Total aquifer sand thickness varies and can be as great as several hundred feet. The Gulf Coast aquifer supplies groundwater for domestic, municipal, manufacturing, and agricultural uses in Austin, Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, Polk, San Jacinto, Trinity, Walker, and Waller Counties. The estimates of groundwater availability for Austin, Fort Bend, Galveston, Harris, Montgomery, Walker and Waller Counties are consistent with either groundwater management plans or groundwater management strategies developed by the groundwater conservation districts or subsidence districts that encompass the counties. The estimates of availability are the maximum amounts of groundwater that can be withdrawn in the future, based on the planning and rules and regulations of the districts. For Chambers, Liberty, Polk, San Jacinto and Trinity Counties that are not in groundwater conservation districts, the estimates of groundwater availability are the largest estimated amounts that can be pumped annually, based on previous regional water planning efforts including those performed by the TWDB.

Figure 3-1
Major Groundwater Aquifers

A groundwater flow model which includes the counties within Region H has been developed by the TWDB for the Gulf Coast aquifer and was released in February 2005. The model has four layers to represent the Gulf Coast aquifer (Layers 1, 2, 3, and 4), representing the Chicot aquifer, Evangeline aquifer, Burkeville confining unit, and Jasper aquifers, respectively. The model provides an additional tool for evaluating the groundwater resources within Region H.

The Queen City Formation is a minor aquifer that occurs in central and southeastern Leon County and in the northern part of Madison County. The Queen City Formation is composed of sand and loosely cemented sandstone with interbedded shale layers occurring throughout. The Queen City Formation ranges in thickness from 250 to 400 feet with approximately 60 to 70 percent of the total thickness being sand according to Texas Water Commission Bulletin 6513 (1965), "Availability and Quality of Ground Water in Leon County, Texas". The aquifer is further described in the 2004 GAM model report developed by the TWDB. Groundwater in small to moderate quantities is provided by the Queen City Formation for domestic, municipal, industrial, and agricultural uses in Leon and Madison Counties.

The Sparta Formation or Sparta Sand is another minor aquifer that occurs in southeastern Leon County, all of Madison County, northwestern Walker County and northeastern Trinity County. The Sparta Formation consists of sand and interbedded clay, with the lower portion of the aquifer containing massive unconsolidated sands with a few layers of shale. The Sparta Formation ranges in thickness from 150 to 300 feet in Leon County and Madison County (Texas Workforce Commission Bulletin 6513). Groundwater from the aquifer is provided for domestic, municipal, and agricultural uses in Leon County and for domestic, municipal, manufacturing, and agricultural uses in Madison County. The Sparta Formation is the groundwater source for the Town of Madisonville and for some water supply corporations in the area.

The Yegua Formation and Jackson Group make up a minor aquifer, designated as the YeguaJackson aquifer, which occurs within the region in parts of Madison, Walker, Trinity and Polk Counties. The Yegua Formation consists of sand, interbedded clay, and scattered lignite. The Jackson Group includes all strata between the Yegua Formation and the Catahoula Sandstone and consists of sand, clay, sandstone, and siltstone. The Yegua Formation ranges in thickness from 1,000 to 1,500 feet; the Jackson Group is approximately 1,100 feet thick, according to Texas Board of Water Engineers Bulletin 5003 (1950), "Geology and Ground-Water Resources of Walker County, Texas". Small to moderate quantities of groundwater are provided by the Yegua-Jackson aquifer for domestic, municipal, industrial, and agricultural uses.

The Brazos River alluvium is the fourth minor aquifer in the region. The Brazos River alluvium occurs in the floodplain and terrace deposits of the Brazos River in Austin, Fort Bend and Waller Counties as shown on Figure 3-2, Minor Groundwater Aquifers. The Quaternary alluvial sediments consist of clay, silt, sand, and gravel according to TWDB Report 345 (1995), Aquifers of Texas, with the more permeable sand and gravel present in the lower part of the aquifer. The saturated thickness of the sediments is as much as 85 feet and the width of the alluvium ranges from less than 1 mile to approximately 7 miles, with the Brazos River located within the width of the alluvial deposits. The Brazos River alluvium supplies groundwater for domestic and agricultural purposes in Fort Bend and Waller Counties. In Austin County, it supplies groundwater for domestic, manufacturing, and agricultural uses.

Figure 3-2
Minor Groundwater Aquifers

Recharge to the two major and four minor aquifers is principally from the infiltration of precipitation and streamflow on the outcrops, as shown in Figure 3-3, Aquifer Outcrop Areas. A portion of the water infiltrates to the zone of saturation and then moves downdip through the aquifers, while large amounts of precipitation on the outcrops are rejected recharge, and become surface water runoff to ponds, lakes, creeks, streams and rivers. Average annual precipitation in Region H ranges from about 40 inches per year in the northern area to about 50 to 54 per year inches in the southeastern area.

3.2.2 Groundwater Use Overview

According to TWDB and Harris-Galveston Subsidence District (HGSD), Region H pumped approximately 643,175 acre-feet of groundwater in 2000 . Groundwater in the region is used for domestic, municipal, manufacturing, steam-electric power cooling and agricultural purposes. The majority of the water is used for municipal purposes. Municipal usage accounts for approximately 78 percent or 501,626 acre-feet of the water pumped. Municipal pumpage consists of water used for cities and communities, parks, campgrounds and water districts serving principally residential developments. Agricultural usage accounts for approximately 14 percent or 90,084 acre-feet of the groundwater pumped. Major agricultural crops include rice, soybeans, corn, cotton and hay. Cattle are the principal livestock raised in the region. Finally, industrial usage represents approximately 8 percent or 51,454 acre-feet of the groundwater-water pumped for manufacturing, mining, steamelectric power, and other industrial needs. A majority of the overall groundwater usage is in the southern part of the region where more of the population, industrial, and agricultural demands exist and where the aquifer is capable of providing large quantities of water for the various uses. Providing pumping data for 2000 was chosen as it was a year with census data and it was a year with lower precipitation and somewhat higher pumping.

Groundwater pumping data for Region H in 2003, a year with higher overall average annual precipitation, was about 555,300 acre-feet. The year 2003 is the most recent year with groundwater pumping data available from TWDB.

3.2.3 Aquifer Conditions

Groundwater conditions within the region have been and should continue to be favorable for the pumping of substantial quantities of good quality water to help satisfy the multiple water needs of the region. The principal aquifers that will provide the water include the Carrizo-Wilcox in Leon and Madison Counties, the Sparta aquifer system in Madison, Walker and Trinity Counties, and the Gulf Coast aquifer system in the central and southern sections of the region. Smaller amounts of water can be provided by the Queen City, Sparta, Yegua-Jackson, and Brazos River alluvium aquifers, with the minor aquifers being particularly important in areas that do not require large quantities of water to reliably meet the demands.

Figure 3-3

Aquifer Outcrop Areas

3.2.3.1 Carrizo-Wilcox Aquifer

The Carrizo-Wilcox aquifer was deposited in a manner that resulted in a sequence of geologic formations of interbedded sand, silt, clay and shale having a thickness of about 2,000 feet in the northern part of the region. The Carrizo Sand is one of two principal water-producing units of the Carrizo-Wilcox aquifer and it is about 100 to 200 feet thick. The Simsboro Sand is the major waterproducing unit in the Wilcox and is about 200 to 400 feet thick. Currently, the overall availability of water from the Carrizo-Wilcox aquifer in Leon and Madison Counties is about 8,400 acre-feet per year based on the management plan adopted by the Mid-East Texas Groundwater Conservation District (METGCD) that includes Leon and Madison Counties. The estimate of groundwater availability for the two counties is under review by the METGCD and may be revised in the future. The current estimates of groundwater availability within the METGCD are consistent with the management plan adopted by the District. The METGCD is developing desired future conditions for the aquifers which will result in an estimate of managed available groundwater and those estimates may vary some from the current estimates of availability in Leon and Madison Counties. If that occurs, the revised estimates for groundwater availability in the two counties can be included in the next regional water planning effort. In 2000, about 4,030 acre-feet of groundwater was pumped from the aquifer in the two counties, based on data from TWDB. Conditions are favorable in the two counties to develop additional supplies from the Carrizo-Wilcox aquifer. The development should be done in a manner that will properly manage the aquifer and monitor its response to the stress of additional groundwater pumping. Water from the aquifer contains less than 1,000 milligrams per liter (mg / l) of total dissolved solids, but water from the Carrizo Sand can contain elevated levels of iron that require sequestering or treatment for removal for water used for most municipal and industrial purposes.

3.2.3.2 Gulf Coast Aquifer

The Gulf Coast aquifer was deposited in a manner that resulted in interbedded sand and clay layers with a substantial thickness of sand that contains water of good quality. The lower unit of the aquifer, the Catahoula Sandstone, is screened by wells for the City of Huntsville and other wells in Walker County. To the south, in Galveston County, the Chicot unit is screened in wells used by the City of Galveston. The aquifer is capable of yielding larger quantities of water in the central and southern parts of Region H and has been utilized over the past 100 years to provide part of the water supply. The Gulf Coast aquifer has sand thicknesses ranging from about 200 to 500 feet in the central and southern parts of the region with the sands containing freshwater decreasing in thickness as the aquifers approach within about 30 to 40 miles of the Gulf Coast.

The pumpage of large quantities of water in the southern part of the region has caused the aquifer's potentiometric head to decline from 50 to about 350 feet in parts of Harris County. Land subsidence of significant magnitude has occurred in parts of Harris and Galveston Counties, resulting in the gradual reduction and shift in areal extent of groundwater pumping to the west over the past 25 years. Subsidence is discussed in the next section of this report.

Digital groundwater flow models have been developed over the past 25 years for the Chicot and Evangeline aquifers in the southern part of Region H to help assess the groundwater resources. As mentioned previously, the most recent digital model was developed by the U. S. Geological Survey for the TWDB with a 2004 report regarding the model titled "Hydrogeology and Simulation of GroundWater Flow and Land-Surface Subsidence in the Northern Part of the Gulf Coast Aquifer System, Texas."

3.2.3.3 Queen City and Sparta Aquifers

The Queen City and Sparta aquifers occur in the northern part of the region and are capable of providing some water in Leon, Madison and Trinity Counties, and the northern part of Walker County. Estimated overall availability from the aquifers is about 25,525 acre-feet per year based on groundwater supply data from TWDB. Water availability estimates from the Queen City and Sparta aquifers for the year 2000 are approximately $12,455,10,790,245$, and 2,035 acre-feet per year in Leon, Madison, Trinity, and Walker Counties, respectively. The two aquifers are composed of sands that can provide small to moderate quantities of water to wells. The water-transmitting capabilities of the aquifers are limited but adequate for meeting smaller demands (pumping rates of 50 to 1,000 gallons per minute [gpm]). The aquifers contain water with less than $1,000 \mathrm{mg} / \mathrm{l}$ of total dissolved solids to depths that range from about 800 to 1,000 feet. Pumping from the two aquifers in Leon and Madison Counties in the year 2000 was about 3,500 acre-feet based on data from TWDB. No pumpage was recorded in the year 2000 TWDB data for either aquifer for Trinity and Walker Counties.

3.2.3.4 Yegua-Jackson Aquifer

The Yegua-Jackson aquifer is located in the northern part of the region and is capable of providing some water in Madison, Polk, Trinity, and Walker Counties. However, estimated usage specifically for the Yegua-Jackson aquifer has not yet been determined by TWDB for these counties. Each of these counties has data available for other-undifferentiated aquifers. According to the TWDB data, the total amount used in these four counties in this category was approximately 3,100 acre-feet in 2000.

The aquifer is composed of sands that can provide small to moderate quantities of water to wells. According to TWDB estimates in the 2002 Texas State Water Plan, yields of most wells completed in the Yegua-Jackson aquifer are small (less than 50 gpm) and net fresh water sands are generally less than 200 feet thick at any location within the aquifer. The quality of the water in the aquifer ranges from good to slightly saline. The 2002 plan also estimates that the entire Yegua-Jackson aquifer in the state produced about 11,000 acre-feet of water in 1997.

3.2.3.5 Brazos River Alluvium

The Brazos River alluvium is a shallow aquifer that is about one to seven miles wide in a corridor along the Brazos River in Waller, Austin, and Fort Bend Counties. The aquifer typically does not extend to a depth greater than 100 feet deep with wells mostly constructed to provide water for irrigation of row crops and hay. The aquifer may contain water with total dissolved solids that approach $1,000 \mathrm{mg} / \mathrm{l}$ and have a high total hardness due to the amounts of calcium, magnesium, and sulfate in the aquifer water. Based on estimates from TWDB, the overall availability of water from the Brazos River alluvium in Austin, Waller, and Fort Bend Counties is about 41,500 acre-feet per year with 2000 pumpage in Fort Bend County estimated at 8,737 acre-feet per year by TWDB. No pumpage was recorded in the 2000 TWDB data for either Austin or Waller Counties. The aquifer should continue to be able to provide water for various uses.

3.2.4 Subsidence Effects

Subsidence has occurred principally in Harris, Galveston, Brazoria, Fort Bend, and Chambers Counties, as the result of the withdrawal of large quantities of groundwater from the Chicot and Evangeline aquifers. Studies and reports prepared by the U. S. Geological Survey and the HGSD show that about 9 -plus feet of land subsidence occurred in a small part of the Houston Ship Channel area with less subsidence further away from the ship channel area. In the City of Katy, total subsidence through the year 2005 is estimated to be about 1.7 feet. In the City of Rosenberg in Fort Bend County, estimated subsidence is less than 1 foot through 2005. HGSD has developed regulatory plans that have been updated through the years. Groundwater pumping in Harris and

Galveston Counties has decreased over the past 23 years as additional surface water has been utilized and less groundwater has been pumped.

A regulatory plan adopted by HGSD in 1999 prescribes general areal pumpage limits for Harris and Galveston Counties for the next three decades until 2030. The regulatory plan pumping requirements were used in estimating the availability of groundwater within the Harris and Galveston Counties area with the estimate of groundwater availability in 2010 being 351,959 acre-feet per year and decreasing to 273,628 acre-feet per year by 2030. HGSD regulatory plan essentially segments Harris and Galveston Counties into three geographic regulatory areas and mandates a reduction in groundwater pumpage per a scheduled reduction timeline. Water users located within the southeastern portion of Harris County and all of Galveston County currently must receive no more than 10 percent of their total water supply from groundwater. This limit or any updated limit adopted by HGSD will exist throughout the Region H planning period. The remainder of Harris County is segmented within two other regulatory areas. Water users within Regulatory Area 2, which comprises the central and east portion of the county, must receive no more than 20 percent of their water supply from groundwater as of year 2000. Groundwater users within the remainder of Harris County, within HGSD Regulatory Area 3, can receive no more than 70 percent of their water supplies from groundwater by year 2010, 30 percent of their water as groundwater by year 2020, and only 20 percent of their water supply from groundwater by year 2030. These regulatory limitations affect all of the WUGs (except irrigation for agricultural purposes and livestock uses) within Harris and Galveston Counties by year 2010, causing a continuing decrease in the allowable amount of groundwater that can be pumped in these two counties over time.

A regulatory plan adopted by the Fort Bend Subsidence District (FBSD) in 2003 also prescribes general areal pumpage limits for the next three decades until 2030 for Fort Bend County. The plan includes pumping limits to control subsidence within the District as needed. The FBSD regulatory plan essentially segments Fort Bend County into geographic regions and requires reductions of groundwater pumpage per a scheduled reduction timeline. Water users located within the northwestern portion of Fort Bend County (Area A) must receive no more than 70 percent of their total water supply from groundwater by 2013 and 40 percent of their water as groundwater by year 2025. This limit or a more stringent limit adopted by FBSD will exist throughout the Region H planning period. Water users within the Richmond/Rosenberg Sub Area, which comprises the central portion of the county, must receive no more than 70 percent of their water supply from groundwater as of year 2015 and 40 percent of their water as groundwater by year 2025. Groundwater users within the remainder of Fort Bend County, FBSD Regulatory Area B, must be permitted for increases in withdrawal but are not currently subject to groundwater reduction requirements. These regulatory limitations affect all of the WUGs (except irrigation for agricultural purposes) within Fort Bend County by year 2013 or 2015, creating a limit to the allowable amount of groundwater that can be pumped in the county over time.

3.2.5 Groundwater Availability in Fort Bend and Montgomery Counties

Groundwater pumpage in Fort Bend County has been increasing over the past years from approximately 69,000 acre-feet per year in 1990 to about 90,060 acre-feet per year in 2003 and 91,320 acre-feet per year in 2004, based on data provided by FBSD. Groundwater availability for the county was estimated by FBSD at about 168,025 acre-feet per year from the Gulf Coast aquifer in the year 2010 and reduced to 119,368 acre-feet per year in 2030. The estimates of groundwater availability are the largest amounts that can be considered, based on the Groundwater Reduction Plan that is a part of the rules and regulations of the FBSD. Over the past 10 years, static water levels within the county in observation wells completed in the Chicot and/or Evangeline aquifer have fluctuated some, but generally have been stable in east, west and central Fort Bend County. In the north part of Fort Bend County, there has been about 35 to 45 feet of water-level decline over the past 10 years in some wells that screen the sands in the Evangeline aquifer (refer to Figure 3-4 through Figure 3-7). There have been smaller amounts of static water-level decline in other areas of Fort Bend County as shown on Figures 3-4, 3-5 and 3-7. A study by the U.S. Geological Survey
(Scientific Investigation Map 3081) shows that from 2004 to 2009 static water-level change in the Chicot aquifer in Fort Bend County ranged from about 20 feet of decline in the most northeast part of the county to 20 feet of rise in the easternmost part of the county.

For the Evangeline aquifer, Scientific Investigation Map 3081 shows that from 2004 to 2009, static water-level declines ranged from zero to 40 feet in Fort Bend County with the largest amount of decline in the north part of the county. The southwest and west parts of the county showed essentially no static water-level decline from 2004 to 2009.

The Gulf Coast aquifer provides groundwater to Montgomery County, with the Jasper aquifer being the principal source for about two-thirds of the county, and the Chicot and Evangeline aquifers providing water in the south central and southeast parts of the county. The estimated groundwater availability from the Gulf Coast aquifer is about 64,000 acre-feet per year, based on the groundwater management plan adopted by the Lone Star Groundwater Conservation District. The estimate of groundwater availability is, for planning purposes, the largest amount of groundwater that can utilized based on the rules of the Lone Star GCD. The estimate of groundwater availability for the Lone Star GCD may change in the future, based on additional hydrogeologic and planning data that are developed by the District. Pumpage within the county was about 55,990 acre-feet in 2000 and 52,640 acre-feet in 2004, based on data from TWDB and the Lone Star GCD. Pumpage principally is in the central and southern parts of the county along the Interstate Highway 45 (IH 45) corridor, around Lake Conroe, and in the southeastern part of the county north of the City of Humble.

Past pumpage and subsequent aquifer response to pumpage show that the development of additional groundwater beyond the estimated availability within Montgomery County will cause further potentiometric head decline in wells. Groundwater pumpage should be spread throughout the county to take advantage of developing water in areas where aquifer conditions are favorable but where the demand has not developed for the water, which is principally in the western and eastern portions of the county away from the IH 45 corridor area.

This Page Intentionally Left Blank

August 2010
 Figure 3-6

996 L96โ
896τ 696τ
026T TL6T ZL6T

3.2.6 Public Supply Groundwater Usage

Region H relied on groundwater to provide approximately 50 percent or 527,006 acre-feet of the municipal water supply in 2000. Austin, Leon, Liberty, Madison, Montgomery and Waller Counties relied on groundwater to supply essentially 100 percent of the domestic and municipal demand. Table 3-1 gives the amount of groundwater pumped for municipal purposes for each county in the region as reported by TWDB. Within the region, Harris County accounted for the most municipal groundwater usage in 2000 with 337,837 acre-feet. The next highest demands in 2000 were Fort Bend County with 68,257 acre-feet, Montgomery County with 52,333 acre-feet, and Brazoria County with 26,796 acre-feet. Municipal users represent cities and communities, parks, campgrounds, and water districts. The year 2000 had below normal precipitation for the year and during the summer months, so groundwater pumpage in 2000 was higher than normal.

According to TWDB and HGSD, in 2000 Region H relied on groundwater to provide approximately 8 percent of the water used for industrial purposes, which was approximately 51,607 acre-feet. Industrial consumption represents water that is used for manufacturing, mining, and steam-electric power. Table 3-2 shows the amount of groundwater used for industrial purposes for each county in the region. Within the region, Harris County accounted for the most industrial groundwater usage in 2000 with approximately 20,800 acre-feet. The next highest users were Fort Bend County with 9,670 acre-feet, Liberty County with 8,952 acre-feet, and Chambers County with 4,063 acre-feet.

3.2.7 Industrial Groundwater Usage

According to TWDB and HGSD, in 2000 Region H relied on groundwater to provide approximately 8 percent of the water used for industrial purposes, which accounted for approximately 51,607 acre-feet of the groundwater used in Region H. Industrial consumption represents water that is used for manufacturing, mining, and steam-electric power. Table 3-2 shows the amount of groundwater used for industrial purposes for each county in the region. Within the region, Harris County accounted for the most industrial groundwater usage in 2000 with approximately 20,800 acre-feet. The next highest users were Fort Bend with 9,670 acre-feet, Liberty with 8,952 acre-feet and Chambers with 4,063 acre-feet.

3.2.8 Agricultural Groundwater Usage

According to TWDB and HGSD, in 2000 Region H relied on groundwater to provide approximately 32 percent of the water used for agricultural purposes. This equaled approximately 14 percent or 92,953 acre-feet of the total groundwater used in the region. Agricultural usage represents water that is used for livestock purposes and irrigation of crops. The main agricultural crops in the region include rice, cotton and soybeans in the south and corn, cotton and hay in the north. Cattle are the principal livestock raised. Table 3-3 shows the amount of groundwater used for agricultural purposes for each county in the region. Within the region, Fort Bend County accounted for the most agricultural groundwater usage in 2000 with 24,971 acre-feet. The next highest user is Waller County with 22,765 acre-feet followed by Harris County with approximately 20,800 acre-feet.

This Page Intentionally Left Blank

	L゙L	L09＇LS	999＇LL9	1ełO1
0．001	S．0	$8 \downarrow \tau$	9ZS＇LZ	ләПеМ
T02	ガ6	80G	988＇G	ләメөМ
0．001	90	8	$0<\varepsilon^{\prime} \tau$	K！！u！ $1 \perp$
0．001	$9 \times$	SL	TE6＇乙	olu！er ues
762	T＇6		979＇ゅ	Y｜OCd
I＇Z9	I＇G	008＇乙	عOヤ＇ş	Kıəmobıuow
0．001	9.9	ITZ	08T＇$ع$	uos！pew
0．001	S＇0t	ZS6＇8	とII＇てて	Кヤノə¢！
L＇29	I＇62	OTV＇ป	678＇t	иоә7
$8 \cdot 9$	S＇S	008‘02	60Z＇6LE	S！ıueH
S＇0	$\mathrm{S}^{\prime} \varepsilon$	002	T6L＇S	
L＇$¢ \tau$	$\dagger^{*} 6$	029＇6	868＇て0T	pueg
8＇8	6＇E9	ع90＇t	SSE＇9	sıəqueपว
6＇I	8＇G	6ET＇乙	SZ6＇9を	ellozeıg
9＇L6	$9^{\prime} \tau$	ち0Z	ャ00＇とโ	u！ 1 Sn \forall
ләғемриnoл Кq рә！！ddns риешәа ләұем 	sosodınd ן 10！pesn дәұемрипол 		\qquad	Kıunoכ

3.2.9 Groundwater Drought Susceptibility

The aquifers within Region H generally have high transmissivity rates or values and are less susceptible to drought because there is a very large amount of water in storage in the aquifers to serve as a buffer, which means the static water levels do not fluctuate drastically during a severe drought. The static water levels recover following a drought when groundwater withdrawals are less. In general, Region H water suppliers have established drought triggers for their groundwater systems as a function of system capacity (wells, pumps, storage, etc.) as opposed to other regions where static aquifer groundwater levels are used as drought triggers.

3.2.10 Groundwater Availability Summary

Groundwater has been an important water resource within Region H for the past 100 years. The major Carrizo-Wilcox and Gulf Coast aquifers and minor Sparta, Queen City, Yegua-Jackson, and Brazos River alluvium aquifers should continue to provide an important water resource to the region that will be used in combination with surface water to help satisfy the regional water demand. Water of good quality continues to be available from the aquifers and should continue in the future with prudent resource management. Groundwater supplies were calculated for each county and basin from various sources and are provided in Table 3A.1.

For aquifers in Fort Bend, Galveston and Harris Counties, which are within the jurisdictions of FBSD and HGSD, the available supplies shown in Table 3 A. 1 represent the regulated groundwater supplies set by the districts and not necessarily the amount of water available from the aquifer. Water User Groups that are not regulated by the subsidence districts, such as irrigators and small domestic well users, would be allowed to withdraw water in excess of these supplies in order to meet their demands. The certified groundwater management plan for the Bluebonnet Groundwater Conservation District was used as a basis for estimating groundwater availability in Austin and Walker Counties. The certified groundwater management plan for the Lone Star Groundwater Conservation District was used as a basis for determining or estimating groundwater availability in Montgomery County.

Groundwater availability within HGSD is consistent with the HGSD groundwater reduction plan through 2030. Groundwater availability within HGSD may change a modest amount after 2030 depending on updates to the groundwater reduction plan in future years. For this current planning effort it is assumed that groundwater availability will remain the same after 2030 within HGSD with the understanding that if the district's groundwater reduction plan is revised at a future date, the estimates of groundwater availability after 2030 may also be revised.

Groundwater availability within Austin, Waller and Walker Counties is based on information provided by the Bluebonnet Groundwater Conservation District. The district is participating in the GMA-14 effort which is developing desired future conditions for the aquifers. That planning effort is to be completed by September 2010. Groundwater availability in Austin, Waller and Walker Counties may change a modest amount based on the results of the GMA-14 desired future conditions planning effort. If that occurs, revised estimates of groundwater availability will be included in future Region H planning efforts.

3.3 Identification of Surface Water Sources

As stated in Chapter 1, surface water sources in Region H consist of reservoir storage, ROR supply from three rivers (the Trinity, San Jacinto and Brazos) and four coastal basins (the Neches-Trinity, Trinity-San Jacinto, San Jacinto-Brazos and Brazos-Colorado). The water supply information presented is based on the Texas Commission on Environmental Quality (TCEQ) Water Availability Models (WAM), updated specifically for the Regional Water Plan. A map showing major surface water sources that serve Region H is included as Figure 3-8.

3.3.1 Available Surface Water

Surface water availability was estimated using the TCEQ WAM for the river basins within Region H. The WAMs use the Water Rights Analysis Package (WRAP), developed at Texas A\&M University, to simulate diversions under current and future conditions using historical rainfall and evaporation data (the model does not increase diversion amounts over time, as will actually occur). Instead, the model simulates one set of monthly diversion targets attempted annually against a historical inflow dataset, which is typically 50 years long and varies each year. The drought of record (DOR) for most of Texas occurred in the 1950s and is reflected in the historic dataset for each basin. Water diversions are modeled according to the parameters of each particular water right and are taken in priority order, such that the most senior water rights are satisfied before junior rights are allowed to divert water. Output files are compared by reviewing the statistical frequency of meeting diversion amounts or target instream flow levels.

In the 2006 Region H Water Plan the reliability of run-of-river water rights was evaluated in terms of reliable yield; that is, the least amount of water diverted amongst all of the calendar years modeled. While this assumption is adequate for water users that may not require steady monthly diversions during a drought of record, other users such as municipal and industrial demands typically require a higher degree of water availability. To address this concern, the 2011 Region H Water Plan evaluated water rights on a monthly basis in addition to an annual basis. The monthly firm yield of run-of-river water rights was evaluated by iteratively reducing the annual target diversions until no monthly shortages occur throughout the simulation period. The reliable yield of a water right is the least amount of water diverted among all of the calendar years modeled.

For reservoirs, an additional step is required to determine firm yield. Water stored in reservoirs allows diversions to continue during periods of drought; however, diverting at high rates rapidly depletes storage. To find the optimal target for a reservoir an iterative process is used, modeling the permitted diversion first at its full authorized amount and then at reduced target diversions until a yield is identified that is met throughout the simulation period.

There were originally eight WAM scenarios (referred to as model runs) simulated under the TCEQ program. The Guidelines for Regional Water Planning require the use of WAM Run 3, full-authorized diversion of current water rights with no return flows, when determining the supply available to the region. This is a very conservative approach, since diversions for municipal and manufacturing users typically return up to 60 percent of that water to streams as treated wastewater effluent. However, the majority of water rights do not address return flows to source streams, implying a right to full consumptive use. The Region H Planning Group adopted the Region G - Brazos G WAM which modified the Brazos River WAM Run 3 to allow for some return flows from wastewater plants in the Brazos River basin. Further discussion of the Brazos G WAM is described in detail in Section 3.3.1.6 Brazos River Basin.

Table 3-4 summarizes the projected yield from surface water supply sources currently available to Region H. The total estimated 2060 yield available to Region H (approximately 2,641,400 acre-feet per year) is approximately equal to the estimated total in the 2006 Regional Water Plan, but the distribution between permits has changed. The yield of several reservoirs decreased due to the projected storage loss as a result of sedimentation, but additional water rights were added as a result of the WAM modeling. The major water rights and modeling assumptions for each basin are discussed in detail below.

Figure 3-8
Major Surface Water Sources

Table 3-4
Current Surface Water Supply Sources Available in Region H

Projected Year 2060 Available Yield	
Basin/Reservoir/Run-of-River	(acre-feet/year)
Sam Rayburn Reservoir and Neches Basin Supplies ${ }^{1}$	64,177
Neches-Trinity Coastal Basin	21,754
Trinity Basin	
Lake Livingston/Wallisville	$1,344,000$
Run-of-River, Lower Basin	224,530
Trinity - San Jacinto Coastal Basin	34,313
San Jacinto River Basin	
Lake Houston	168,000
Lake Houston Additional Yield	5,000
Lake Conroe	74,300
Run-of-River	55,000
San Jacinto - Brazos Coastal Basin	33,051
Brazos River Basin	155,031
BRA/COE System	
Run-of-River, Lower Basin	418,311
Brazos - Colorado Coastal Basin	12,019
Local Supplies (i.e. Stock ponds, etc), all basins	31,895
Total Existing Surface Water Supply Available to Serve Region H	$\mathbf{2 , 6 4 1 , 3 8 1}$

${ }^{1}$ The total yield of Sam Rayburn Reservoir is approximately 820,000 acre-feet/year. The value shown only includes the portion currently contracted to customers within Region H.
${ }^{2}$ This amount is based on current contracts within Region H. The total yield of the BRA/COE system is approximately 650,000 acre-feet/year.

The TCEQ WAM models were updated to add new water rights and reflect the effects of sedimentation on reservoirs. Reservoirs reduce the velocity of the streams they impound, causing suspended soil particles to settle; over time, storage volume is lost due to this accumulation. Sedimentation rates were determined and applied to on-channel reservoirs to calculate the year 2000 and year 2060 storage volumes (see Table 3-5). The WAM model was then run under each storage condition. The storage capacity lost to sedimentation reduced the yield of most reservoirs in the year 2060. This change in yield was represented as a linear decline over time in the summary tables.

Table 3-5

Reservoir	Surface					Storage Capacity		
	Elev. (feet msl)					Original (ac-ft)	$\mathbf{2 0 0 0}$ (ac-ft)	$\mathbf{2 0 6 0}$ (ac-ft)
	131.0	$1,741,867$	$1,738,326$	$1,717,083$				
	5.0	35,300	25,781	25,691				
	44.5	133,990	131,547	106,409				
	201.0	416,228	414,143	377,567				
Houston	537.5	52,400	45,319	20,437				
Conroe	2220.0	115,937	94,808	39,478				
Brazos Basin - BRA/COE System	594.0	457,600	437,656	415,255				
Aquilla	791.0	37,100	36,904	36,519				
Alan Henry	504.0	82,000	52,525	20,973				
Belton	622.0	235,700	227,825	216,165				
Georgetown	693.0	153,500	129,011	87,743				
Granger	987.0	724,738	540,340	398,000				
Stillhouse Hollow	533.0	627,100	554,203	504,153				
Granbury	363.0	217,494	208,017	172,405				
Possum Kingdom	1162.0	59,400	55,457	49,599				
Whitney	238.0	160,100	147,104	126,869				
Limestone								

The total supply available from each source available to Region H is included in Table 3A.1, Current Water Sources, in Appendix 3A. In general, Table 3A. 1 indicates the maximum amount of water supply that could be obtained during DOR conditions from each supply source. This information was compiled from existing contracts and water rights in Region H, the updated WAM for surface water supplies and groundwater studies addressed in Section 3.2 of this chapter. Not all of the sources listed in Table 3A.1 are exclusively available to Region H. Reservoirs located in the upper portions of the Brazos, Trinity and Neches basins are shown with their firm yield, but the portion of that yield available within Region H is limited to the contracted amounts.

3.3.1.1 Neches-Trinity Coastal Basin

Surface supplies in the Neches-Trinity Coastal River Basin were modeled using the TCEQ WAM Run 3 model. Of the water right permits totaling 70,175 acre-feet per year from the Neches-Trinity coastal basin, 40,191 acre-feet per year were reliable during the DOR. Approximately one-third of this firm total is the U.S. Fish and Wildlife Service water right for the Anahuac National Wildlife Refuge. Water rights yielding over 500 acre-feet per year for consumptive uses (all for irrigation) are listed in Table 3A. 1 and have a total reliable yield of 21,754 acre-feet per year. This is almost identical to the basin yield estimated in the 2006 Regional Water Plan (21,701 acre-feet per year). The WRAP input file for this model is included in Appendix 3B.

3.3.1.2 Trinity River Basin

The Trinity River Basin contains 32 major reservoirs, including two Region H sources, Lake Livingston/Wallisville and Lake Anahuac. The permitted yield of Lake Livingston was diminished using WAM Run 3, but showed a firm yield in excess of the permit amount in the TCEQ WAM Run 1 (full use with expected return flows). In the 2006 Region H Water Plan it was assumed that sufficient
return flow from the Upper Trinity Basin would be available throughout the planning period to make Lake Livingston's permitted yield firm. As part of the 2011 Region Water Plan Update, a special study was included to analyze the upper basin demands, reuse strategies and return flows projected in the 2006 Region C Water Plan and the effects on the firm yield of Lake Livingston. The study also included updates to reuse strategies and projected return flow estimates identified in the 2008 Region C Water Conservation and Reuse Study. The 2011 Region H plan identified the following:

- Projected Return Flows Available at the Oakwood Gage (CP 8TROA)
- Firm Yield of Lake Livingston during each planning period decade
- Necessary level of return flows required to make the permitted yield of Lake Livingston firm

The firm yield of the Lake Livingston water rights is expected to decrease from the full permitted yield of 1,344,000 acre-ft per year in the year 2010 to 1,265,000 acre-ft per year in the year 2030. The decrease in firm yield is the result of increasing amounts of reuse projected in the upper basin, reducing the amount of return flows available to Region H . The firm yield is then projected to increase after 2030 as Region C begins to import water supplies to meet growing demands. By the year 2050 the permitted yield of Lake Livingston is projected to be firm. The projected reductions in the firm yield of Lake Livingston are anticipated to be a conservative estimate, as the upper basin is not expected to implement all of the reuse strategies recommended in the 2006 Region C Plan. The results of the study are summarized below:

- Minimum upper basin net return flows of 253,055 acre-ft per year projected in 2030
- Minimum return flows available to Region H in 2030 of approximately 185,500 acre-ft per year
- Firm yield of Lake Livingston water rights are reduced in decades 2020, 2030 and 2040
- Minimum firm yield of Lake Livingston water rights is approximately $1,265,000$ acre-ft per year in 2030
- Minimum level of return flows required to make Lake Livingston water rights firm is approximately 285,000 acre-ft per year in 2060

A summary of the return flow analysis and Lake Livingston yield analysis was prepared to coordinate the findings of this study with Region C. The summary report is included in Appendix 3C. The WRAP input files for this analysis are included in Appendix 3B.

The reliability of three lower Trinity River ROR supplies came from a set of "fixed right" agreements. The agreements are between the Trinity River Authority (TRA) and the City of Houston (COH) (who jointly own the water rights for Lake Livingston) and three providers of irrigation-water. These irrigation-water providers are the Chambers-Liberty Counties Navigation District (CLCND), the American Rice Growers Co-op Association (Dayton Canal), and the Lower Neches Valley Authority (LNVA) which owns and operates the Devers Canal. Pursuant to the fixed right agreement CLCND, Dayton Canal, and Devers Canal are entitled to divert up to 88,820, 33,000, and 86,000 acre-feet per year, respectively. These diversions occur from the Trinity River and some tributaries of the Trinity River. Although these diversions physically take place downstream of Lake Livingston, they are senior in priority to the Lake Livingston water rights.

Approximately 27,500 acre-feet per year of the Devers Canal's 86,000 acre-feet per year is part of Lake Livingston yield and is reflected in the plan as a contractual commitment of the TRA. Fifty-six thousand, of the remaining 58,500 acre-feet per year of the Devers Canal yield, was purchased by the San Jacinto River Authority (SJRA), for use in the Trinity-San Jacinto Coastal Basin.

Houston recently purchased outright the entire amount of the Dayton Canal fixed right agreement. Additionally, Houston holds another water right in the Trinity River Basin with an authorized diversion of 45,000 acre-feet per year from the Old River Tributary of the Trinity River. The reliable yield of the run-of-river right is 26,510 acre-ft per year.

In addition to the 58,820 acre-feet per year in the fixed right agreements, CLCND also owns the rights (39,613 acre-feet per year, of which 17,700 acre-feet per year is reliable) to the Turtle Bayou (Lake Anahuac) supply in the Trinity River Basin. The SJRA purchased a portion (30,000 acre-feet per year) of CLCND's fixed right in 2001. The ownership of the Trinity River Basin supplies is summarized in Table 3-6.

Table 3-6
Ownership of Trinity River Basin Supplies

Owner	Source	Permitted Amount (acre-feet/year)	2060 Reliable Yield (acre-feet/year)
COH	Lake Livingston/Wallisville System	940,800	940,800
TRA	Lake Livingston/Wallisville System	403,200	403,200
COH	Trinity River and Big Ditch	38,000	33,000
COH	Old River Tributary	45,000	26,510
SJRA	Trinity River	86,000	86,000
CLCND	Trinity River	73,334	58,820
CLCND	Lake Anahuac	39,613	17,700
LNVA	Trinity River	2,500	2,500
Total			

The supply amounts shown for the Lake Livingston/Wallisville Saltwater Barrier system are the total permitted diversions for each body of water, as discussed in the paragraph above. The City of Houston has a permit to divert 902,800 acre-feet per year from Lake Livingston and 38,000 acre-feet per year from the Wallisville Saltwater Barrier. The TRA has a permit to divert 351,600 acre-feet per year from Lake Livingston and 51,600 acre-feet per year from the Wallisville Saltwater Barrier. Not all of this water would be available to Region H. Of the amount that is owned by the TRA, approximately 26,900 acre-feet per year is committed outside of Region H. In addition, it should be noted that physical diversions are not made from the Wallisville Saltwater Barrier, but the combined yield of Lake Livingston is increased when operated in conjunction with the Wallisville Saltwater Barrier. The increase in yield is a result of the barrier precluding the need for salinity reduction releases for downstream senior water rights.

3.3.1.3 Trinity-San Jacinto Coastal Basin

The surface water supply in the Trinity-San Jacinto Coastal Basin was modeled using WAM Run 3. Water right permits totaling 44,473 acre-feet per year from the Trinity-San Jacinto Coastal Basin were analyzed using the water availability model. Of this, 34,973 acre-feet per year was found to be reliable during the DOR. Water rights yielding over 500 acre-feet per year for consumptive uses are listed in Table 3A.1 located in Appendix 3A, and total 34,313 acre-feet per year. NRG's Cedar Bayou plant has a permit to divert 30,000 acre-feet per year of saline water from Cedar Bayou, which accounts for most of the firm supply. The remaining 4,313 acre-feet per year of reliable yield are irrigation rights. The WRAP input file for this model is included in Appendix 3B.

3.3.1.4 San Jacinto River Basin

The surface water supply in the San Jacinto River Basin was modeled using WAM Run 3. Water right permits totaling 374,544 acre-feet per year from the San Jacinto River Basin were analyzed using the water availability model. Of the 374,544 acre-feet per year permitted, 302,300 acre-feet per year was found to be reliable during the DOR. In addition to the surface water rights, the Indirect Reuse Water Right 10-5809 was issued in June 2004 and included in Table 3A. 1 (Appendix 3A). The WRAP input file for this model is included in Appendix 3B.

The only reliable ROR diversion right included for the basin is the SJRA permit for 55,000 acre-feet per year. SJRA diversions are physically made from Lake Houston and are the primary source of water for the SJRA Highlands Canal System. The water right is included in the TCEQ model as a run-of-river right as originally permitted. However, the reliability of the water right is based on a water contract between the City of Houston and the San Jacinto River Authority. As a result, the 2011 Region H Water Plan recommends the full permitted amounts of 55,000 acre-ft per year for the SJRA run of river permit and 168,000 acre-ft per year for the original Lake Houston permit as reliable in accordance with the 2001 and 2006 Region H Water Plans. Other reliable run-of-river water rights in the basin were either for recreation or less than 500 acre-feet per year and were not included in Table 3A. 1 (Appendix 3A). In September 2009, the TCEQ granted an additional 80,000 acre-feet of run-of-river split between the City of Houston and the SJRA. Physically, diversions will be made from Lake Houston at existing COH and SJRA pump stations. The supply is not 100% reliable but will allow for the use of the in-basin supply, when available, in lieu of transferring water from the Trinity Basin.

Lake Houston

The available yield of Lake Houston is determined from two permitted diversions. The original permitted diversion of Lake Houston, 168,000 acre-feet per year, is firm throughout the planning period. This is due to the downstream location of Lake Houston on the San Jacinto River and its seniority relative to other major water rights in the basin. The COH owns the entire original permitted yield from Lake Houston. The 2006 Region H Water Plan included additional yield from Lake Houston as a recommended water management strategy. In 2008, the TCEQ granted the additional yield from Lake Houston (Permit No. 5807) with a permitted diversion of 28,200 acre-feet per year. The 2011 Plan has been updated to include the additional yield from Lake Houston as part of the available supply. Using the 2060 sedimentation condition, only an additional 5,000 acre-feet per year is available from Lake Houston as firm supply. The total supply available from Lake Houston in 2060 (173,000 acre-ft per year) is the sum of the supply available from the original permit (168,000 acrefeet per year) and the additional yield permit (5,000 acre-feet per year).

Lake Conroe

The Lake Conroe yield declined from its permitted amount of 100,000 acre-feet per year to 74,300 acre-feet per year due to the WAM Run 3 condition and the year 2060 storage capacity estimate. The WAM Run 3 assumption that no return flows will be available greatly impacted the streamflows in the lower San Jacinto Basin. Lake Houston is senior to Lake Conroe, which results in Lake Conroe passing inflows when Lake Houston storage levels drop. As a result of the removal of return flows from the model, Lake Conroe passes more inflows in order to keep Lake Houston full. Also, the bathymetric survey used to determine the sedimentation rate for Lake Conroe identifies a potential discrepancy in the original volumetric capacity of Lake Conroe. This discrepancy likely resulted in a higher than actual sedimentation rate, which also reduces the yield over a 60-year period. The COH and SJRA jointly own the water rights for Lake Conroe. The COH's portion is 66,667 acre-feet per year from Lake Conroe, with an estimated year 2060 reliable yield of 49,038 acre-feet per year. The SJRA portion is 33,333 acre-feet per year from Lake Conroe, with an estimated year 2060 reliable yield of 25,262 acre-feet per year.

Entergy (formerly Gulf States Utility Company) has a contractual agreement with SJRA to divert water from Lake Conroe into Lewis Creek Reservoir. In the TCEQ WAM Run 3, this permit is represented as a separate water right. This was corrected in the 2006 Plan and represented as a contract.

3.3.1.5 San Jacinto-Brazos Coastal Basin

Surface supply in the San Jacinto-Brazos Coastal Basin was modeled using Run 3. Water right permits totaling 120,919 acre-feet per year from the San Jacinto-Brazos Coastal Basin were analyzed using the water availability model. Of the 120,919 acre-feet permitted, only 37,569 acre-feet per year was found to be reliable during the DOR. Water rights yielding over 500 acre-feet per year for consumptive uses are listed in Table 3A. 1 of Appendix 3A, and total 33,051 acre-feet per year. NRG's Webster plant had a permit to divert 4,440 acre-feet per year of saline water. Since 2006 the permit has been canceled at the request of NRG. The Gulf Coast Water Authority (GCWA) owns two water rights in the San-Jacinto Basin including one water right recently acquired from the former Chocolate Bayou Water Company (CBWC). The GCWA water right C5169 was represented in the 2006 Region H Water Plan with a reliable yield of 3,842 acre-ft per year. However, the water right is used for impoundment in the Sugarland area and not as a source to supply water contracts according to GCWA. The GCWA system availability is discussed further in Section 3.3.1.6. To reflect this, the availability of the water right recommended in the 2011 Region H Water Plan is 0 acre-ft per year. The reliable yield of water right C5357 was reduced from 17,600 acre-ft per year in the 2006 Region H plan to 15,930 acre-ft per year in the 2011 Plan. The firm portion of this supply is 2,120 acre-feet per year. The WRAP input file for this model is included in the Brazos Basin WRAP input file in Appendix 3B.

3.3.1.6 Brazos River Basin

Surface supply in the Brazos River Basin was modeled by the Consultant for the Brazos G Water Planning Group. A survey of wastewater plant operators within the Brazos Basin was conducted to determine the amount of anticipated reuse during the planning period. Based on the survey results, WAM Run 3 was modified to allow 65,256 acre-feet per year (58.3 million gallons per day [mgd]) of return flows in the model in the 2010 decade and 128,503 acre-feet per year (114.7 million gallons per day [mgd]) of return flows in the 2060 decade. There are water right permits in the Brazos River Basin of Region H totaling 866,351 acre-feet per year. The modeled annual reliable yield of these rights was 488,419 acre-feet per year. Water rights yielding over 500 acre-feet per year for consumptive uses are listed in Table 3A.1 of Appendix 3A and total 418,311 acre-feet per year. The WRAP input file for this model is included in Appendix $3 B$.

There was a significant reduction in expected yield from the lower Brazos Basin despite the allowance of limited return flows in the model. The largest decline was seen in the Dow Chemical water right, with an authorized diversion of 321,856 acre-feet per year. The reliable yield of this right was reduced from 148,052 acre-feet per year in the 2006 Plan to 137,475 acre-feet per year in the 2011 Plan due to reduced return flows. Similarly, the Brazosport Water Authority water right yield decreased from 23,017 acre-feet per year to 16,492 acre-feet per year. Despite the yield reductions for several water rights in the basin, some firm yields increased. The Richmond Irrigation Company water right was estimated at 29,920 acre-feet per year in the 2006 Region H Water Plan and was not reduced under this model. Similarly, NRG Energy Inc's yield from Smithers Lake remained unchanged at 34,300 acre-feet per year.

The Gulf Coast Water Authority holds three water rights in the Brazos Basin, including a recently purchased water right previously owned by the former Chocolate Bayou Water Company. In the 2006 Region H Water Plan, the combined reliable yield of the three rights was estimated at 235,005 acre-feet per year based on the minimum annual diversion during the drought of record. Under this model scenario, the estimated reliable yield fell to 229,786 acre-feet per year due to lower estimated return flows from the upper basin. The combined firm yield of the three water rights is approximately 78,344 acre-ft per year when analyzed on a monthly basis. This is the result of water
rights C5171 and C5322, which are not reliable during the months of July and August during the Drought of Record.

After discussing the water availability with the GCWA, a monthly analysis of the GCWA contracts and reliable yields was conducted. This allowed the reliable yield of the water rights to be analyzed as a system rather than individually. In addition to the three water rights in the Brazos Basin, the analysis also included reliable yield from a GCWA water right in the San Jacinto - Brazos Basin, water supply contracts from the BRA and existing contracts for future supply from the GCWA. The existing contracts for future supply consist of several contracts that will be available after 2015 once the required infrastructure is constructed to treat additional raw water from the GCWA. A strategy will be developed in Chapter 4 to allocate the supplies provided to these contracts. The analysis concluded that from the combination of sources, the GCWA was able to provide 256,838 acre-feet per year to meet contractual demands. Of this supply, 198,323 acre-feet per year is supplied from the three run-of-river water rights in the Brazos Basin. The remaining supplies come from a water right in the San Jacinto - Brazos and supplies contracted from the BRA.

Brazos River Authority/U.S. Army Corps of Engineers System (BRA/COE)

The Brazos River Authority stores water in a system of water supply and flood control reservoirs in the middle and upper basins. The Authority owns Possum Kingdom, Granbury, and Limestone Reservoirs. The U.S. Army Corps of Engineers owns the remaining reservoirs in the system. The supply amounts included in Appendix $3 A$ for these facilities were provided by the Brazos G Water Planning Group. The combined firm yield of the BRA Reservoirs is estimated at 650,477 acre-feet per year assuming 2010 sedimentation conditions. The portion of this yield available to Region H is reflected in supply contracts between the BRA and customers in this region. Those contracts total 155,030 acre-feet per year.

3.3.1.7 Brazos-Colorado Coastal Basin

The Brazos-Colorado Coastal Basin contains the lower reach of the San Bernard River. The model for this basin was included in the Colorado River WAM, prepared by RJ Brandes Co. for the TCEQ. Two water rights were identified within Brazoria County, and the WAM Run 3 results for these rights are identified in this report. A year 2060 iteration was not made for this basin because sedimentation was not anticipated in the off-channel reservoir associated with these rights. The WRAP input file for this model is included in Appendix 3B.

3.3.1.8 Lake Sam Rayburn

A water supply allocated from Lake Sam Rayburn in the Neches River Basin, listed in Table 3A.1, represents contracted amounts from the Lower Neches Valley Authority by the Trinity Bay Conservation District, the Bolivar Peninsular SUD and irrigators in Chambers and Liberty Counties. The full yield of the lake was obtained from the East Texas Water Planning Group, and the contract amounts are reflected in both regional plans.

3.3.1.9 Local Supplies

Local supplies (stock ponds, catchments, etc.) that cannot be related to reported groundwater or surface water use are currently meeting certain livestock and mining demands. The TCEQ allows a landowner to impound up to 200 acre-feet of water without obtaining a water right. Numerous local supplies are included as surface water supplies in Appendix 3A.

3.3.2 Discussion of Modeling Results

It is important to note that the TCEQ WAMs are based on historic hydrologic data to account for rainfall and evaporation losses. While the model provides an approximation of water right availability
during the drought of record, the model does not predict water right availability in future droughts which may have different hydrologic conditions. The models generally do not include return flows that often increase the reliability of downstream water rights. The reliability of water rights that rely on reservoir storage is also based on assumed sedimentation rates that are projected through the planning period. While this assumption is good for planning purposes, it may not reflect current sedimentation rates. The models also contain assumptions in the internal modeling routines that affect the accuracy of results. Currently, the models are also not able to simulate the interaction between groundwater and surface water supplies.

3.3.3 Surface Water Drought Susceptibility

Within this report, the surface water reservoir and ROR supplies represent firm yield and reliable quantities, respectively. However, surface water is dependent on rainfall, and future droughts cannot be expected to follow the same pattern as the DOR used in the WAM. Therefore, the river authorities and water providers in Region H maintain Drought Contingency Plans prepared under provision of the Texas Administrative Code, Section 30, Chapter 288 for their respective shares of these supplies. These drought plans are highlighted in Table 3-7 and tabulated in detail in Appendix 3D. While each water provider utilizes unique criteria to define drought stages, their drought contingency plans use a common methodology. A first-stage trigger is used to initiate customer notification systems and voluntary use reductions. A second-stage trigger is used to initiate mandatory use reductions. Finally, a third-stage trigger is used to initiate additional use reductions and/or the suspension of service to some customers.

Table 3-7
Typical Drought Triggers for Region H Supplies

Water Sourcel Established By	Drought Type	Trigger Condition and Duration
Lake Livingston Wallisville System/TRA	Mild	Lake Livingston elevation is <126.50 feet at USGS gage, condition lasts 1 day
	Moderate	Lake Livingston elevation is <124.00 feet at USGS gage, condition lasts 1 day
	Severe	Lake Livingston elevation is <121.40 feet at USGS gage, condition lasts 1 day
Lake Conroe/SJRA	Mild	Elevation <198 feet (85\% of storage capacity), condition lasts 1 day
	Moderate	Elevation <190 feet (55\% of storage capacity), condition lasts 1 day
	Severe	Elevation<185 feet (40\% of storage capacity), condition lasts one day
Houston System Reservoirs/ City of Houston	Mild	Combined storage (Lakes Livingston and Houston) is less than 24 months surface water supply, condition lasts 10 consecutive days
	Serious	Combined storage (Lakes Livingston and Houston) is less than 18 months surface water supply, condition lasts 10 consecutive days
	Severe	Combined storage (Lakes Livingston and Houston) is less than 12 months surface water supply, condition lasts 10 consecutive days
Brazos River at Richmond/GCWA	Mild	12.19 feet or 1700 cfs, condition lasts 1 day
	Moderate	11.93 feet or 1500 cfs, condition lasts 1 day
	Watch	11.65 feet or 1300 cfs, condition lasts 1 day
	Warning	11.23 feet or 1000 cfs, condition lasts 1 day
BRA System Reservoirs/BRA	Watch	For a reservoir/reservoir system, when storage is < Stage 1 Trigger level and could be reduced to Stage 2 Trigger or less during the next 12 months. For the entire Authority system, when the combined storage of the Authority system is < Stage 1 Trigger level and could be reduced to Stage 2 Trigger or less during the next 12 months.
	Warning	For a reservoir/reservoir system, when storage is < Stage 2 Trigger level and could be reduced to Stage 3 Trigger or less during the next 12 months. For the entire Authority system, when the combined storage of the Authority system is < Stage 2 Trigger level and could be reduced to Stage 3 Trigger or less during the next 12 months.
	Emergency	For a reservoir/reservoir system, when storage is < Stage 3 Trigger level. For the entire Authority system, when the combined storage of the Authority system is < Stage 3 Trigger level.

3.3.4 Surface Water Conveyance Systems

Region H contains a number of raw surface water conveyance systems (pipelines, canals, and pump stations). The conveyance systems lie primarily in the coastal river basins in the southern counties of Region H. The main canal systems belong to the $\mathrm{COH}, \mathrm{CWA}$, Gulf Coast Water Authority (GCWA), TRA, Lower Neches Valley Authority (LNVA), Chocolate Bayou Water Company (now part of the GCWA), SJRA, CLCND, and Dow Chemical. The information in this section was gathered from each of the entities listed above and the Trans-Texas Water Program Phase I Report for the Southeast Area. These systems are shown in Figure 3-9.

The CWA network consists of a main conveyance canal system and a pipeline distribution system. The conveyance system includes the Trinity River pump station, the main canal, the Lynchburg Reservoir, the Cedar Point lateral, the Lake Houston pump station, and the west canal. The Trinity River pump station near Liberty has been expanded to the ultimate design capacity of $1,400 \mathrm{mgd}$. The main canal runs westerly from the Trinity River pump station about 22 miles to the Lynchburg Reservoir (north of the Houston Ship Channel). The total capacity of the canal is approximately $1,300 \mathrm{mgd}$ from the Trinity River Pump Station to the Cedar Point lateral. Downstream of the Cedar Point lateral, the canal has a capacity of $1,100 \mathrm{mgd}$. The Lynchburg Reservoir has an impoundment capacity of 4,600 acre-feet. The Cedar Point lateral, with a design capacity of 230 mgd , is located about 8 miles southwest of the Trinity River pump station and diverts water from the main canal southward. The Lake Houston pump station diverts water from Lake Houston into the CWA west canal, which travels southwesterly until it terminates at the COH East Water Purification Plant. The CWA distribution system consists of pressure pipelines that start at the Lynchburg Reservoir with the Lynchburg pump station and extend southwest about 10 miles to the Bayport Industrial Complex and eastward along State Highway (SH) 225 conveying raw water to industrial users and to the Southeast Water Purification Plant (SEWPP).

The GCWA system consists of three main canals that deliver water from the Brazos River to Fort Bend, Brazoria, and Galveston Counties: the American Canal, the Briscoe Canal, and the Galveston Canal System. The American Canal runs parallel to SH 6 southeasterly from the Brazos River lift station (the Shannon Plant, which is 12 miles north of Rosenberg) to Alvin, Texas. The Briscoe Canal runs southeasterly from the Brazos River pump station (the Briscoe Plant, which is 6 miles west of Arcola) to Alvin and then to an industrial complex in southern Brazoria County. The American Canal is connected to the Briscoe Canal by "Lateral 10" just west of Manvel. The Galveston Canal System extends from the old Briscoe system southeast of Alvin to the GCWA Reservoir (four miles east of Dickinson). The Galveston Canal System connects to the American Canal six miles east of Alvin. The Gulf Coast Water Authority has three pump stations: the Shannon Plant with a total capacity of 347 mgd , the Briscoe Plant with a total capacity of 302.4 mgd , and the American Canal's second lift station located in Sugar Land with a total capacity of 225 mgd .

The GCWA has recently purchased water rights formerly held by the Chocolate Bayou Water Company. The former Chocolate Bayou Water Company distribution system is divided into two sections. The Juliff section, also known as the old South Texas Water system, transports water from the Juliff pump station on the Brazos River near the Fort Bend-Brazoria County border, and the Chocolate Bayou Canal section, which transports water from Chocolate Bayou near Liverpool. The Juliff section has two main canals (the North Canal and the Main Canal) and the Angleton Lateral. This section provides irrigation water to rice farmers and some industrial water to Brazoria County. The Chocolate Bayou Canal section has its main pump station on Chocolate Bayou, but there are additional pump stations on Mustang Bayou and Halls Bayou as well. This section also provides irrigation and industrial water to Brazoria County.

The Dayton Canal is a small system that serves Liberty County. The canal, which diverts from the Trinity River, extends about 20 miles west of the river and has an estimated capacity of 90 mgd .

The Devers Canal System currently delivers irrigation water easterly from the Trinity River to customers in Liberty and Chambers Counties. The main canal system is 81 miles with 125 miles of laterals. Due to the flat grade of the main canal, the flow can be reversed to flow westerly. The system contains two pump stations. The first one on the Devers main canal at the Trinity River has a total rated capacity of 295 mgd , and the second pump station (near SH 563) has a total capacity of 274 mgd. The Devers system has recently been acquired by the Lower Neches Valley Authority (LNVA).

The LNVA system diverts water from the Neches River and Pine Island Bayou and delivers it to customers in Jefferson County, farmers in Chambers and Liberty Counties, and to the Bolivar SUD in Galveston County. The LNVA canal consists of two main canals, the Neches Main and the BI Main. After the junction of the two main canals, the Neches Main travels southwesterly until the Nolte Canal branches off traveling westward into Liberty County. At this point the Neches Main turns and extends southward into Chambers County. The Nolte Canal and the end of the Neches Main are the only sections of the LNVA canal system that extend into Region H. The Nolte Canal is divided into two portions by a check structure. The capacity of the Nolte Canal upstream of the check is 130 mgd and 36 mgd downstream from the check structure.

SJRA provides raw surface water from a point at the Lake Houston dam through its canal system and SJRA's Highlands Reservoir to a point just north of the Houston Ship Channel, providing service to the industrial customers in eastern Harris County. SJRA also contracts with the Coastal Water Authority (CWA) to convey up to 50 MGD of its Trinity Basin water supplies through the CWA Main Canal, and from there to their Highlands System.

The CLCND canal system diverts water from the Trinity River just south of Lake Anahuac. The canal travels easterly and branches to the north and south along the length of the main canal to serve the City of Anahuac and irrigators in Chambers County.

The Dow Chemical Company diverts water from the Brazos River into the Harris and Brazoria Reservoirs in Brazoria County. From Harris Reservoir, water is released into Oyster Creek and rediverted into a canal near Lake Jackson. From the Brazoria Reservoir, water is released into Buffalo Camp Bayou, which joins the Dow canal below the Oyster Creek diversion pump station. The canal travels parallel to the Brazos River and supplies the Brazosport Area Water Authority's water treatment plant before entering the Dow complex just north of Freeport. The canal continues east around Freeport to serve the Dow southern facility.

Figure 3-9
Raw Surface Water Conveyance Systems

3.3.5 Previously Studied Potential Reservoir Sites

In the City and Basin Master Plans within Region H, twenty-four potential reservoir sites have been identified. Of these, five have been identified in the State and Regional Water Plans as reservoir sites of unique value-Allens Creek in the Brazos Basin, Austin County; Little River and Little River Off-Channel in the Brazos Basin, Milam County; Bedias in the Trinity Basin, Madison County; and Tehuacana in the Trinity Basin, Freestone County. Construction of the Allens Creek reservoir and the Little River Off-Channel reservoir was recommended in the 2006 Region H Water Plan. From information provided in existing studies and reports, a summary table listing expected yields, costs, and a brief discussion of potential issues of concern regarding each potential reservoir is included in Appendix 3E.

The potential reservoir sites for Region H were reassessed as potential water management strategies for this update to the water plan. That discussion is presented in Chapter 4. Also, the sites were again considered for recommendation as reservoir sites of unique value. That discussion is presented in Chapter 8.

3.3.6 Legal and Regulatory Factors

A number of legal (institutional) and regulatory factors affect water planning, development, and usage within the Region H area. The most notable of these factors are surface water rights, groundwater conservation districts, interbasin transfer rules, wastewater return flow impacts, and environmental flow requirements.

All of the water included in the analysis of surface water supplies for Region H is obtained under water rights issued through the TCEQ and its predecessor agencies. The larger wholesale water providers hold a substantial portion of the rights available to the region, and these large providers contract to supply water obtained under those rights to various WUGs.

Five groundwater conservation districts exist within the Region H area. These districts are the HGSD, FBSD, Bluebonnet Groundwater Conservation District (includes Austin, Walker, and Waller Counties), Lone Star Groundwater Conservation District (Montgomery County) and Mid-East Texas Groundwater Conservation District (includes Leon and Madison Counties). Each district enacts and enforces groundwater regulations within their respective counties. The specific rules regulating the use of groundwater use were described in the previous section, Subsidence Effects. The HarrisGalveston and Fort Bend districts have adopted regulatory plans that limit the withdrawal of groundwater within their respective counties.

The Brown-Lewis Bill (formally Senate Bill 1, $75^{\text {th }}$ Legislature) included restrictions on the interbasin transfer of water. These rules mandate that water supplies obtained by a receiving basin become junior to all other rights in existence within the originating basin of the transfer. This rule applies to all future permits associated with interbasin transfers. As illustrated within this report, a significant quantity of water currently supplied within Region H occurs via interbasin transfers. A portion of the water delivered by all of the larger water providers occurs through some type of interbasin transfer. The most significant of these are the COH and SJRA transfers of Trinity River water into the San Jacinto watershed and the BRA and GCWA transfers of Brazos River water into the San JacintoBrazos Coastal Basin. It is anticipated that new interbasin transfers will be needed to support growth throughout Region H, particularly to the San Jacinto and San Jacinto-Brazos Basins where the largest population growth is occurring. Current limitations on interbasin transfers will affect the development of future water resource management strategies.

In the $77^{\text {th }}$ Texas Legislature, the Water Code was amended to remove an obstacle to long-term planning. Under the previous law, any water right that was unused for a period of ten years could be cancelled by the TCEQ, making that water available for diversion under other water rights permits. This is contrary to the state and regional water planning processes, which project demands 50 years
in advance and recommend projects to meet demands 30 years in advance. The amendment to the Water Code exempts certain water rights from cancellation for non-use, including permits obtained as a result of the construction of a reservoir in whole or in part by the permit holder, permits for reservoirs of 50,000 acre-feet or larger, and permits obtained to meet demonstrated long-term water supply or electric generation needs.

Wastewater reuse and reclamation is a water management strategy that is growing in usage within the Texas water industry. Wastewater reuse is the reuse of wastewater prior to its discharge into a receiving stream of the state. These reused quantities can become supply for irrigation, manufacturing, mining, steam-electric power and limited municipal purposes (landscaping, etc.). Wastewater reclamation, however, can affect the reliability of existing surface water rights. In particular, within Region H, one of the greatest potential areas of reuse is within Harris and Montgomery Counties upstream of Lake Houston. Reuse within Region C in the Trinity Basin would impact the yield of Lake Livingston. Thus significant reuse of these flows may affect the water rights of SJRA, TRA, and COH. Indirect reuse permits are increasingly being requested within the state, allowing the use of the bed and banks of the receiving stream to carry treated effluent to a downstream diversion point. Unlike direct reuse, this practice is considered a separate diversion and requires a separate water right permit. These permits typically allow the rediversion of a percentage of the discharged volume, with the difference being allocated to meet carriage losses and instream flow requirements. The amount required to be left instream is determined on a site-specific basis by TCEQ.

3.3.7 Environmental Uses and Requirements

Water right permits for environmental use and enhancement may be granted by TCEQ, although there is no use category within the Water Code for meeting environmental needs. These water rights are typically categorized as Recreational or Other. Within Region H, there are fewer than 20 permits for the diversion or impoundment of water for the purposes of wetland habitat creation/maintenance, wetland mitigation, or wildlife conservation. The larger of these permits are listed in Table 3-8. Since 1985, environmental flow requirements have been included as conditions within new and amended water rights. These requirements may include a specified minimum instream flow or gauge height threshold for diversions under the permit, or specify a percentage of the diverted amount that must be returned to the source stream. The establishment of these permit conditions requires supporting data on environmental needs of rivers, streams, bays, and estuaries for wetlands habitat. To increase this body of knowledge, the Texas Instream Flow Program was initiated in 2003 as a joint effort between TPWD, TCEQ, and TWDB. A series of studies are funded and underway, and the results will be incorporated in future water rights permitting and regional water planning.

In 2007, Senate Bill 3 took effect beginning the environmental flows allocation process. The process began with the creation of the Environmental Flows Advisory Group and the Texas Environmental Flows Science Advisory Committee to guide the statewide process. Two basin and bay area stakeholder groups have been formed to develop recommendations concerning environmental flow regime, associated policy considerations, and strategies to meet the flow recommendations that will impact environmental flows in Region H. The Trinity and San Jacinto Rivers and Galveston Bay Stakeholders Committee was appointed in July of 2008. The TCEQ is expected to adopt environmental flow standards for the Trinity and San Jacinto Rivers/Galveston Bay by June 1, 2011. The Stakeholder group for the Brazos River/Bay and Estuary Area will be appointed by June 1, 2010 and begin working on recommendations concerning environmental flow regime, associated policy considerations, and strategies to meet the flow recommendations. The TCEQ is expected to approve the group's recommended environmental flow standards by April 1, 2013.

Table 3-8
Major Environmental Water Rights in Region H

Owner	Stream	Use	Diversion (acre-feet/year)
U.S. Anahuac Wildlife Refuge	Oyster Bayou	Anahuac NWR* - wetland habitat	21,000
Texas Parks \& Wildlife Department	Carpenters Bayou	Sheldon WMA** - wetland habitat	2,688
U.S. Fish and Wildlife Service	Bastrop Bayou Austin Bayou	Brazoria NWR - fish \& wildlife conservation	2,527
U.S. Fish and Wildlife Service	Cedar Lake Creek	San Bernard NWR - wetland habitat	1,086
U.S. Fish and Wildlife Service	Big Slough	Brazoria NWR - fish \& wildlife conservation	1,080

*NWR is National Wildlife Refuge
**WMA is Wildlife Management Area
A new provision under the Texas Water Code establishes the Texas Water Trust within the Texas Water Bank. Existing water rights can be placed in the Texas Water Trust to be dedicated to environmental needs, including instream flows, water quality, fish and wildlife habitat, or bay and estuary inflows. While no water rights from Region H have yet been placed in the Texas Water Trust, it can be anticipated that it will figure in further efforts to address both the technical and institutional issues associated with environmental water rights within Region H.

3.3.7.1 Bay and Estuary Inflows

Estuaries are coastal waters where inflowing stream or river water mixes with and measurably dilutes sea water. The Brazos River has a very small estuary, but Galveston Bay is one of the largest and richest estuary systems in the state. Tides along the Region H portion of the Texas Gulf Coast are small (typical ranging up to 2 feet), but their influence is felt far inland due to the flat topography of the coastal plain. Galveston Bay averages a 7 -foot tidal depth, so freshwater inflows are important in balancing the tidal intrusion of seawater into the estuary habitat.

The Region H Water Planning Group requested input from the Galveston Bay Freshwater Inflow Group (GBFIG) to address this resource need. GBFIG was established in December 1996 as an ad hoc technical work group. GBFIG includes representatives of major stakeholders in the use of Galveston Bay and its tributaries including all those groups specifically itemized in Sec. 11.1491 of the Texas Water Code for "estuary advisory councils." Its efforts have been endorsed, and staff participation has been authorized by TWDB, TCEQ, TPWD, and the General Land Office (GLO). GBFIG coordinates with and reports its findings to both the Galveston Bay Estuary Program and RHWPG.

The work of GBFIG builds upon the State Bay and Estuary Studies authorized by the Legislature in 1985 (HB-2) and amended in 1987 (SB-683). On December 31, 1994, Freshwater Inflows to Texas Bays and Estuaries: Ecological Relationships and Methods for Determination of Needs was published jointly by TWDB and TPWD. This document details the methodology to be applied in each of seven major estuarine systems. Several draft documents providing historical inflow data (1941-1990) and application of the State's methodology to Galveston Bay followed. In December 1998, TPWD issued a final Freshwater Inflow Recommendation by Texas Parks and Wildlife Department for the TrinitySan Jacinto Estuary (hereafter cited as TPWD 1998).

TPWD 1998 presented output from the State's optimization model relating freshwater inflows to biological productivity. Based on that analysis of monthly inflow data, several points on a performance curve were identified, ranging from $\operatorname{Max} \mathrm{Q}$, the maximum quantity of freshwater falling within the range of analysis, to Min Q , the minimum modeled quantity of freshwater inflow capable of maintaining bay and estuary fishery harvest. The Galveston Bay system receives average annual inflows of about 10 million acre-feet per year (maf/yr), and median twelve-month inflows of just over 7 maf/yr. Because of the uncertainties inherent in analyzing or managing natural processes, TPWD recommended the point of "maximum harvest" (Max H), or a flow of 5.2 maf/yr, as the target inflow for the Galveston Bay system.

Using the data developed by the State, special studies of Galveston Bay freshwater inflows have been performed in conjunction with regional water planning efforts. In April 1998, Brown \& Root completed a Galveston Bay Freshwater Inflow Study under the Trans-Texas Water Program. Additional modeling by Brown \& Root has been performed to address specific analytic needs of GBFIG. The TCEQ WAM program has improved the statistical data and model availability for Galveston Bay. The Region H Planning Group requested more thorough studies of freshwater inflows and impacts of strategies. The 2006 RWP included a study by Kellogg, Brown \& Root on the impacts of water management strategies on seasonal frequency. This evolved into a special study in the first phase of the 2011 planning process by AECOM to determine impacts of individual strategies at a frequency greater than the annual frequency previously studied. An additional study, contained in the Chapter 4 of this Plan, examines impacts of management strategies in conjunction with upstream strategies for each decade of the planning horizon.

Based on information from state and regional studies, GBFIG set about relating its consideration of freshwater inflow needs to the planning task of Region H. GBFIG developed a recommendation that relates target flows under a range of conditions to target frequencies as shown in Table 3-9, which generally are less frequent than historical frequency of occurrence. GBFIG specifically noted that development of management strategies for freshwater inflows requires the consideration of quantity, quality, seasonality (monthly flows), and location of inflows and that its own analytic efforts would continue. It also noted that flows available to meet environmental water needs included total flows to the system and, as a result, include some sources outside of Region H. The GBFIG recommendation was accepted for incorporation into the Regional Water Plan in March 2000.

Table 3-9
Environmental Water Needs for Galveston Bay

Inflow Scenario	Quantity Needed (million acre- feet/year)	Historical Frequency	Target Minimum Frequency
Max H	5.2	66%	50%
Min Q	4.2	70%	60%
Min Q-Sal	2.5	82%	75%
Min Historic	1.8	98%	90%

Scenario Descriptions:
Max H: Modeled inflows recommended for maximum bay and estuary fisheries harvest by TPWD.
Min Q: Minimum modeled inflow recommended to maintain the bay and estuary fisheries harvest.
Min Q-Sal: Estimated minimum acceptable inflow recommended to maintain the salinity needed for bay and estuary fisheries viability.
Min Historic: Minimum annual inflow calculated for Galveston Bay over the period of record (1941-1990).

Notes: The health and productivity of Galveston Bay must consider the quantity, quality, seasonality (monthly inflows), and location of inflows. It is anticipated that the inflow needs projections will continue to be refined over time. The use of improved data focusing on the fisheries production solely from the Galveston Bay system is one example of an anticipated means of refinement.

3.3.7.2 Water Quality

The Texas Commission on Environmental Quality (TCEQ) 2008 State of Texas Water Quality Inventory Report addresses the streams within all Texas river basins by segment. Each segment is described and classified, the designated water uses are identified, and the water quality is determined. This report was reviewed for the river segments in Region H to identify their uses and any existing conditions or concerns. Region H is fortunate not to have naturally occurring chlorides or minerals affecting surface water quality as is the case in some regions, but the effects of development within the watersheds are reflected in the Inventory Report. Some streams and bayous, predominantly in the lower San Jacinto Basin and the San Jacinto-Brazos Coastal Basin, were found to be non-supportive of contact recreation due to elevated bacterial levels. This condition is typically the result of wastewater discharges and urban watershed runoff. Sand mining in the San Jacinto River Basin has increased nutrient loads in the San Jacinto River which can result in an increase in cyanobacteria levels. Basin maps from the Water Quality Inventory Report are shown in Appendix 3F. A search of the TCEQ Water Rights Database revealed three water rights specifically designated for the improvement of instream water quality (see Table 3-10). The largest of these is used for stream quality control in Brazoria County.

Table 3-10
Water Quality Rights in Region H

Owner	Stream	Use	Diversion (acre-feet/year)
Dow Chemical Co.	Brazos River	Stream Quality Control	16,000
Paul Weinman	Brazos River	Wetlands	2,448
Cove Creek Corp.	Cove Creek	Water Quality - Flush sewage effluent	967

As with the Galveston Bay estuary, instream salinity is a concern in the flat lower reaches of the Trinity, San Jacinto, and Brazos Rivers. The tidal salt wedge migrates upstream during the drier summer months, threatening the intakes of water right holders. This situation has been addressed on the Trinity River by the construction of the Wallisville Saltwater Barrier, and the Lake Houston dam protects the intake points for the COH and SJRA. The effects of the salt wedge on Brazos River water rights are discussed in Chapter 4 of this report. Figure 3-10 depicts the seasonal and restrictive waterways of Region H .

The Texas Parks \& Wildlife Department conducted an Analysis of Texas Waterways: A Report on the Physical Characteristics on Rivers, Streams, and Bayous in Texas. This 1996 report identifies the seasonal and restrictive waterways:
"those sections of rivers, streams, and bayous... which have been found to contain an insufficient flow of water for recreational use under normal conditions, or for various reasons could not be classified as a major waterway, and would be restricted to seasonal usage"

Figure 3-10

Seasonal and Restrictive Waterways in Region H

3.3.7.3 Unique River and Stream Segments

The Region H Water Planning Group identified eight stream segments of unique ecological value in the 2006 Region H Water Plan. These are Armand Bayou in Harris County; Austin Bayou, Bastrop Bayou and Cedar Lake Creek in Brazoria County; Big Creek in Fort Bend County; another Big Creek in San Jacinto County; Menard Creek in Liberty, Hardin, and Polk Counties and Oyster Creek in Chambers County. Several of these streams are used for irrigation and/or recreational supplies, but these water rights were not included in the total Region H supply due to size or reliability. A full discussion of unique stream segments is made in Chapter 8.

3.3.8 Navigational Uses

The Texas Natural Resources Code states that if a water body maintains an average width of 30 feet, it is considered navigable. The Texas Department of Transportation, the U.S. Army Corps of Engineers, and several port authorities share responsibility for maintaining the major navigable waterways within the region. These include the Gulf Intracoastal Waterway, the Houston Ship Channel, and the Lower Trinity River.

The Gulf Intracoastal Waterway is a man-made canal paralleling the Gulf Coast. In Texas, it is 433 miles long, and within Region H it crosses Chambers, Galveston, and Brazoria Counties, serving the Ports of Galveston and Freeport. The system is over 50 -years old and the U.S. Army Corps of Engineers maintains the canals through a program of scheduled dredging. The flow in the waterway is brackish and not used for water supply.

The Houston Ship Channel is a deep-draft channel connecting ocean-going vessels with the Port of Houston and industries located along Buffalo Bayou. It begins at the mouth of Galveston Bay and continues north past the Barbours Cut Terminal and Bayport Industrial Complex, into the San Jacinto River and Buffalo Bayou, ending at the Port of Houston Turning Basin. Ship channels serving the Port of Galveston and the Port of Texas City branch off from the main channel on the northwestern side of Galveston Island, and the system connects with the Gulf Intracoastal Waterway at that point as well. The respective port authorities and the U.S. Army Corps of Engineers maintain the ship channels at a depth of 45 feet to serve deep-draft vessels. Although the entire length of the Ship Channel is tidally influenced, there is some concern that the deep dredging may influence the salinity of the shallow Galveston Bay estuary, which averages 7 feet deep, particularly during drought periods.

The Lower Trinity River serves the shallow (6-foot draft) cargo Port of Liberty, Texas. Water depth and freshwater quality is maintained in the Lower Trinity River by the Wallisville Saltwater Barrier, which includes a lock system for navigation. Barge traffic connects from the Port of Liberty to the Intracoastal Waterway by traversing a dredged canal along the eastern coast of Trinity Bay. This canal connects to the Houston Ship Channel west of Smith Point.

Numerous recreational ports serve the region. The Texas Department of Transportation recognizes the Port of Anahuac on the Trinity Bay and the Port of Sweeny on the San Bernard River, although there are many others. These ports are located in tidal areas, and do not require freshwater flows to maintain navigability.

3.3.9 Recreational Uses

Water-based recreational uses in Region H include activities that are directly dependent upon the region's rivers, streams, reservoirs, and bays, such as swimming, boating, fishing, and paddle sports, as well as those enhanced by proximity to water sources such as wildlife viewing, camping and hunting, and eco-tourism. There are also economic activities associated with water-based recreation
such as marinas, tourist accommodation and services, and other recreation-based businesses. Generally, communities developed adjacent to or near accessible water bodies contribute to an increased tax base from which economic benefits can accrue. Positive local tax base impacts in rural communities of Region H have been and can be significant. Therefore, reservoir development in these areas has been viewed as an economic benefit for these regions. Recreational water needs and requirements have two distinct components - physical and economic.

The physical component addresses the amount (volume) of water needed to perform various recreational activities. This is strictly a function of the geometry of whatever body of water is being considered and the type of activity that is being investigated.

In order to provide for this need, some stakeholders in water-related recreational activities apply for permits from TCEQ that allow them to divert and impound water in man-made lakes and ponds dedicated to recreational purposes. A search of the TCEQ Water Rights Database returned 160 records for recreation water rights with total diversion of about 9,200 acre-feet per year. Five of these rights account for 6,572 acre-feet per year in authorized diversions as shown in Table 3-11.

Table 3-11
Major Recreational Water Rights in Region H

Owner	Stream	Diversion (acre-feet/year)
Brazos River Club	Brazos River	3,000
Indigo Lake Estates	Log Gully	1,164
C E Zwahr ET AL	Austin Bayou	1,003
George W Maxwell	Cow Island	805
The Woodlands Corporation	Bear Branch	600

The majority of the region's freshwater recreation occurs not on dedicated recreational lakes, but on water supply reservoirs. The region's water supply reservoirs provide a broad range of recreational opportunities but were created to meet the region's consumptive water demands. While recreation is permitted on most of the region's water supply reservoirs, there are no dedicated recreational water rights protecting volumes for recreational purposes on these reservoirs. Three water supply reservoirs in Region H provide a significant portion of the freshwater-related recreational activities in the region-Lake Livingston, Lake Conroe, and Lake Houston, in decreasing degrees.

The economic importance of water-based recreational businesses is illustrated in recent studies that indicate water-related recreational activities account for a significant portion of the Texas economy. In 2006, Texas residents and non residents spent $\$ 9.2$ Billion on wildlife recreation in Texas. Approximately $\$ 4.7$ Billion was spent on equipment, $\$ 2.9$ Billion on trip expenditures and $\$ 1.6$ Billion was spent on licenses, contributions, land ownership/leasing. The 2006 National Survey of Fishing, Hunting, and Wildlife - Associated Recreation reported that there were an estimated 2.5 million anglers in Texas (residents and non-residents), with total expenditures estimated at approximately $\$ 3.2$ Billion. The survey also estimated that there were approximately 1.1 million hunters in Texas with expenditures of approximately $\$ 2.2$ Billion. The Texas Parks \& Wildlife Department reported in 2008 that approximately 595,000 boats ($6^{\text {th }}$ nationally in boat ownership) are registered in the state, 99 percent of which are used as pleasure craft. Counties in Region H account for nearly one-quarter of these.

While there is a direct relationship between lake levels and these industries, there is no statistical data available to quantify that relationship. Although anecdotal information suggests negative impacts will accrue to lakeside communities when reservoir levels decrease, there is no economic
data available which would allow a comparison to the economic impacts of not meeting municipal, manufacturing and/or irrigation water demands. When considering the impacts of lake levels, one might consider (1) water levels required to operate boat ramps and docks, (2) water levels or depths required to support water recreational activities (boating and fishing), and (3) water levels required to support resident and migratory wildlife. Also important to consider is the acceptable duration of a given condition. Lake levels will decline during droughts, but recover during average-to-wet years. Resident wildlife species will be directly affected by the drought conditions. Migratory species would be indirectly affected, because they would be able to adjust their routes to find the best habitats in a particular year.

All state parks and forests, national parks and forests, wildlife refuges, and wildlife management facilities were identified in order to consolidate a listing of recreational resources in Region H. Every facility was researched to determine if it provided facilities for camping and picnicking, nature and wildlife viewing, hunting, fishing, and boating and other water sports. Sources include various websites and publications from the Texas Parks \& Wildlife Department, National Park Service, USDA Forest Service, U.S. Fish and Wildlife Service, National Wildlife Refuge System, Galveston Bay National Estuary Program, U.S. Army Corps of Engineers, U.S. Historical Society, Great Outdoor Recreation Pages, Recreation.Gov, 1998-1999 Texas Almanac, Texas road atlases, and various county and river authority websites. Additional information was acquired from the Houston Canoe Club on areas within the region of importance to paddle sports. This information was compiled into the following three tables contained in Appendix 3G.

Region H-River Segments, Bay and Estuaries - Lists all of the river basins, river segments, bays, and estuaries in the region and the recreational opportunities associated with each.

Recreation - Lists all of the national parks, preserves, wildlife refuges, state parks, wildlife management areas, and forests and the recreational opportunities associated with each.

Region H-River Segments, Bay and Estuaries-Special Features - Lists all of the lakes and reservoir segments in the region and the recreational opportunities associated with each.

From the tables containing the public recreational sites and data obtained from the Galveston Bay Recreational User's Handbook, Figure 3-10 was prepared to illustrate the location and each associated recreational activity for Region H. This map also shows the seasonal and restricted waterways within the region. Appendix 1A contains a detailed bibliography of all of the sources used for this section.

3.4 Total Water Supply

The total amount of water supply currently available to Region H from existing available water sources is $3,556,538$ acre-feet per year. Of that, approximately 75 percent is surface water. By the years 2030 and 2060, the available supply is expected to be 3,343,151 acre-feet per year and $3,411,210$ acre-feet per year, respectively. Table 3-12 below summarizes current and projected water supplies.

3.4.1 Water Supplies Available by City and Category

This water supply is distributed to each WUG, i.e. each city, each county-other, and each nonmunicipal water use category. This distribution is shown in Table 3H.1, located in Appendix $3 H$.

In Table 3H.1, the ground and surface water supply sources available to Region H are assigned to the various WUGs in the region based on contracts and water rights, limitations of conveyance facilities, and in some cases, current usage patterns. In general, a thorough search was performed to determine how each WUG obtained its water supply. This required identification of third-party contracts as well as water providers in addition to the wholesale water providers (WWPs).

About 72 percent of the year 2010 total available Region H supply is allocated to the region through one of the WWPs. Table 3-13 shows the distribution of the available supply among the providers for the study years of 2010,2030 , and 2060.

Table 3-12
Summary of Water Supply Available for Region H for Study Years 2010, 2030, and 2060

Supply Source	Supply Available (acre-feet/year)		
	Year 2010	Year 2030	Year 2060
Groundwater			
Gulf Coast Aquifer			
Carrizo-Wilcox Aquifer	812,709	685,529	685,843
Queen City Aquifer	10,493	9,756	9,610
Sparta Aquifer	7,906	7,906	7,906
Brazos River Alluvium	17,414	17,414	17,414
Yegua-Jackson Aquifer	41,539	41,539	41,539
Undifferentiated Aquifer	6,400	6,400	6,400
Subtotal	1,117	1,117	1,117
Surface Water	897,578	769,661	769,829
Neches River Basin ${ }^{1}$			
Neches-Trinity Coastal Basin	63,863	63,946	64,177
Trinity River Basin	21,754	21,754	21,754
Trinity-San Jacinto Coastal Basin	$1,568,530$	$1,489,530$	$1,568,530$
San Jacinto River Basin	34,313	34,313	34,313
San Jacinto-Brazos Coastal Basin	321,800	314,000	302,300
Brazos River Basin ${ }^{2}$	33,051	33,051	33,051
Brazos-Colorado Coastal Basin	573,081	573,278	573,342
Local Supplies, all basins	12,019	12,019	12,019
Subtotal	30,549	31,599	31,895
Total	$3,658,960$	$2,573,490$	$2,641,381$
		$3,343,151$	$3,411,210$

${ }^{1}$ Supplies include 63,863 acre-ft per year of firm water currently contracted from upstream LNVA to Region H customers. Total LNVA supply is greater but may not be available to Region H .
${ }^{2}$ Supplies include 155,031 acre-ft per year of firm water currently contracted from BRA system reservoirs to Region H customers. The total BRA supply is greater but is not available to Region H . The remaining Brazos River Basin supply is comprised of Lower Brazos Basin permits owned by Dow Chemical, GCWA, NRG, Brazosport Water Authority, and private irrigators.

Table 3-13
Available Supply by Wholesale Water Provider within Region H for Study Years 2010, 2030, and 2060

Provider	Supply (acre-feet/year)		
	Year 2010	Year 2030	Year 2060
Baytown Area Water Authority	17,534	17,534	17,534
Brazos River Authority*	155,031	155,031	155,031
Brazosport Water Authority	16,492	16,492	16,492
Chambers-Liberty Counties Navigation District	76,520	76,520	76,520
Central Harris County Regional Water Authority	5,651	3,662	3,662
Clear Lake City Water Authority	26,876	26,876	26,876
Dow Chemical ${ }^{1}$	137,475	137,475	137,475
Fort Bend County WCID 1	5,634	5,634	5,634
Fort Bend County WCID 2	8,654	7,387	7,375
Galveston County WCID 1	3,541	3,541	3,541
Gulf Coast Water Authority ${ }^{2}$	192,687	214,190	214,254
City of Houston	1,264,231	1,203,528	1,254,628
City of Huntsville	27,686	27,640	27,567
Lower Neches Valley Authority*	63,863	63,946	64,177
Missouri City	25,534	18,999	18,985
North Channel Water Authority	8,355	8,332	8,327
North Fort Bend County Water Authority	35,009	48,077	48,077
North Harris County Regional Water Authority	115,957	65,272	65,272
NRG ${ }^{3}$	94,220	94,220	94,220
Richmond - Rosenburg	14,908	11,779	11,779
City of Pasadena	40,561	40,561	40,561
San Jacinto River Authority	245,244	240,244	232,744
Trinity River Authority	403,200	379,500	403,200
City of Sugar Land	32,844	22,537	21,590
West Harris County Regional Water Authority	65,692	36,958	36,958
Total	3,083,399	2,925,935	2,992,479

*Supplies represent current contracts to Region H with the assumption that the contracts will be extended and maintained through 2060. Total supply is greater but may not be available to Region H.
${ }^{1}$ Dow Chemical supplies do not include 16,000 acre-feet per year contracted from BRA
${ }_{3}^{2}$ GCWA supplies do not include 44,980 acre-feet per year contracted from BRA.
${ }^{3}$ NRG supplies Include Richmond Irrigation water rights. NRG supplies do not include 83,000 acre-feet per year contracted from BRA.

3.4.2 General Methodology for Assigning Resources to WUGs

The following methodology summarizes the data collection process and the other procedures followed to arrive at the information in Appendix $3 H$. In general, the methodology includes the following steps.

Data Collection

- Identify contract supplies available to WUGs via a direct or multi-tier transaction with a WWP using contract information from WWPs and the 2006 Regional Water Plan.
- Coordinate with other planning regions to resolve interregional conflicts, where applicable. No interregional conflicts were identified during discussions with regions C, G, and I.
- Identify other possible water providers, using the TWDB Water Use Database and any other available information. Identify the end user WUGs that are supplied by these providers under a contractual or retail agreement. Contact these providers, and request contract information from them.
- Identify surface water supplies being used by self-supplied WUGs, by consulting the TCEQ Water Rights Database and Table 3A.1.
- Update information for water providers identified in the 2006 Regional Water Plan.

3.4.3 Groundwater Allocation

Groundwater supplies in Leon and Madison Counties were allocated according to information received from the Mid-East Texas Groundwater Conservation District. Groundwater supplies in Harris, Galveston, and Fort Bend Counties were allocated in accordance with the groundwater reduction goals provided by the Harris-Galveston Subsidence District (HGSD) and the Fort Bend Subsidence District (FBSD). In Brazoria County, groundwater supplies were allocated based on historic pumpage. In Liberty County, groundwater was first allocated to non-irrigation WUGs. The exceptions are described in more detail below. Generally, where groundwater resources were not adequate to meet demands, supplies were distributed to WUGs based on total demand. Any exceptions to this rule are noted below.

3.4.3.1 Counties With Adequate Groundwater Resources

The available groundwater supplies in Austin, Leon, Madison, Polk, San Jacinto, Trinity and Walker Counties were found to be adequate to satisfy the groundwater demands of WUGs for the planning period.

Water was allocated to WUGs in Leon and Madison Counties and was allocated with guidance provided by the Mid-East Texas Groundwater Conservation District. The plan set forth by the district shows the amount of water allocated from each source to individual customers including irrigation, livestock, manufacturing, and mining users. These values were adjusted, within reasonable limits, to minimize shortages.

3.4.3.2 Counties With Inadequate Groundwater Resources

Brazoria County

Brazoria County has municipal, manufacturing, mining, irrigation, and livestock water demands that cannot be entirely satisfied by surface water and groundwater resources. The groundwater availability of approximately 50,400 acre-feet per year can satisfy part of the water needs but not all of
the needs in the county. The communities of Jones Creek, and West Columbia were allocated groundwater to meet their entire demands while others were supplied groundwater in addition to surface water supplies. Adequate groundwater was also budgeted through 2060 to supply the Brazoria County MUDs, Bailey's Prairie, Brookside Village, Danbury, Hillcrest, Holiday Lakes, Iowa Colony, Orbit Systems Inc., Southwest Utilities, Surfside Beach, Sweeny, and Varner Creek UD entirely from groundwater. After meeting the groundwater demands of these WUGs, the remaining groundwater supply was allocated among users that were connected to surface supplies as well as groundwater.

The City of Brazoria was capable of providing for all of its demands through 2060 by using surface water supplies and was not allocated any of the county's groundwater resources. Alvin, Angleton, Clute, Freeport, Oyster Creek, Manvel, Pearland and Richwood develop shortages in either 2020 or 2030. Supplies to irrigation in the Brazos River Basin are anticipated to be insufficient to meet demands beginning in 2010. Manufacturing shortages in the Brazos and San Jacinto-Brazos River Basins begin in 2010 and 2020, respectively. Livestock demands that were not met by this groundwater supply were assumed to be provided by local water supplies in 2010. Mining shortages are expected to occur in 2020.

Chambers County

Chambers County will experience groundwater shortages immediately in the 2010 planning period without the use of surface water supplies to meet its municipal, irrigation, manufacturing, mining, and livestock demands. Throughout all of the planning periods, the county will not be able to rely on groundwater supplies alone. Groundwater resources were distributed to each WUG receiving groundwater according to total demand.

Galveston and Harris Counties

Groundwater was allocated in Galveston and Harris Counties in accordance with regulations established by HGSD which provide for reductions in groundwater pumping in these counties based on a percent of total demand over the planning period. The groundwater reductions vary depending upon the Subsidence District area where the WUG is located.

WUGs located in Subsidence District Area 1 were limited to groundwater usage equal to 10 percent of their total demand for all planning periods from 2010 to 2030. For 2040 through 2060, the 2030 groundwater allocation was carried forward. In Area 2, WUG groundwater usage was limited to 20 percent of their total demand for the planning periods 2010 to 2030. For 2040 through 2060, the 2030 groundwater allocation was carried forward. Maximum groundwater usage for WUGs located in Area 3 varied by planning period. The maximum allowable groundwater use for 2010 was calculated to be 70 percent of the total water demand for the period, for each WUG. For 2020, this percentage was decreased to 30 percent. For 2030 and subsequent decades, only 20 percent of the total water demand could be met with groundwater sources. Steam Electric and Mining WUGs were first allocated surface water supplies followed by groundwater until the remaining demand was satisfied, or the regulatory limit was reached.

Shortages from insufficient supply begin in the San Jacinto River Basin of Harris County in 2010 due to groundwater restrictions. Before this time, shortages are due to groundwater restrictions. In the San Jacinto-Brazos and Trinity-San Jacinto Coastal Basins of the county, groundwater shortages through 2060 only occur due to groundwater pumping restrictions and not from limited supply. Municipal WUGs in Galveston County will experience shortages due to restrictions rather than limited supplies for all of the planning periods. In the Neches-Trinity Coastal Basin, only livestock and mining WUGs are served by groundwater, and these users will experience shortages due to groundwater restrictions.

In instances where groundwater supplies were not adequate to meet groundwater demands or restricted groundwater demands, the amount supplied was prorated among the WUGs based on restricted demand, or total demand, if no restrictions applied.

Fort Bend County

Similar to the subsidence restrictions imposed upon Harris and Galveston Counties by HGSD, the FBSD regulates the quantity of groundwater pumpage in portions of Fort Bend County. However, these restrictions only apply to two zones in the northeastern portion of the county. The FBSD regulations also do not align with the planning decades; surface water conversion dates in 2013 and 2025 require groundwater users in Fort Bend County to reduce groundwater pumpage to 70 percent and 40 percent of total demand respectively. For the 2010 planning period it was assumed that each WUG could pump groundwater in order to satisfy 100 percent of the total 2010 demand. For the 2020 planning decade it was assumed that both zones would be required to lower pumpage to 70 percent of the total demand for each WUG. For the 2030 period, it was assumed that only 40 percent of the total WUG demands could be met by groundwater. For the planning periods 2040 through 2060, the 2030 ground water supply volumes were carried forward. These limitations were not applied to irrigation usage within the county, which were allocated sufficient groundwater supplies in order to provide for irrigation demands remaining after surface water contracts were allocated. Steam Electric and Mining WUGs were first allocated surface water supplies, and then groundwater until the remaining demand was satisfied, or the regulatory limit was reached.

The groundwater restrictions imposed by FBSD are not sufficient to prevent shortages due to supply from 2010 to 2060. The available amount of groundwater was distributed to WUGs according to their demands or restricted demands, where applicable. It was assumed that all groundwater demands to irrigators could be met by groundwater after applying existing surface water contracts. The FBSD restrictions do not apply to irrigators and small domestic wells and it is assumed that these users would pump the amount of water necessary to meet their demands. Therefore, the total available groundwater supplies were increased to accommodate the additional water usage by irrigators, as well as other unregulated WUGs, such as Pleak, that were not subject to subsidence restrictions.

Liberty County

Irrigation demands in Liberty County are of considerable magnitude. For this reason, groundwater was first provided to nonirrigation WUGs. The remaining groundwater was allocated to irrigation based on demand. Shortages appear in the 2010 period for irrigation in the Neches, Neches-Trinity, and Trinity San Jacinto River Basins. However, surface water supplies are adequate to prevent irrigation in the Trinity River Basin from experiencing further shortages until 2020.

Montgomery County

Available groundwater supplies are projected to be inadequate to meet demands in Montgomery County beginning in the 2010 planning period. The Lonestar Groundwater Conservation District established conversion requirements to limit groundwater withdrawal in Montgomery County to 64,000 acre-feet per year. To meet initial conversion requirements in 2015 more populated communities, most notably Conroe and the Woodlands, will be over-converted to surface water while smaller communities will remain on groundwater. For conversions after 2015, 2045 projected water demands were used to determine the WUGS that would be converted to surface water. Groundwater was initially allocated proportionally to municipal WUG demands, first to WUGs that were not converted to surface water then to WUGs that were anticipated to be converted before each planning period. The WUGs Consumers Water Inc, Crystal Springs Water Company, Magnolia, Montgomery County UD 2 \& 3, Montgomery County WCID \#1, New Caney MUD, Patton Village, Point Aquarius MUD, Porter WSC, Roman Forest, Southwest Utilities, Splendora, Stagecoach and Woodbranch were assumed to remain on groundwater supplies from 2010 to 2060. The mining water demand remaining after including surface water contracts was fully met by groundwater supplies. Livestock
demands were met entirely from local supplies and groundwater. The small irrigation demand in Montgomery County was supplied by surface water contracts from SJRA and groundwater supplies.

Waller County

The groundwater resources of Waller County were allocated for municipal, manufacturing, mining, irrigation, and livestock based on the groundwater available for the county. The estimated demands for groundwater within the county can be met with available groundwater supplies, Municipal and irrigation conservation and groundwater supplies from Harris County. Katy, which receives groundwater from Harris County, is assumed to remain on groundwater due to participation in the West Harris County Regional Water Authority groundwater reduction plan.

3.4.4 Surface Water Allocation

- The values entered into Appendix $3 H$ for municipal WUGs are the surface water supply identified from WWPs and smaller water providers.
- It was assumed that the COH provided enough water to meet its remaining surface water demands and existing contracts for surface and groundwater.
- Contracts from GCWA were found to exceed the total of the WWP's contracts from other providers and water rights. Because of this, existing GCWA contracts and supplies were analyzed on a monthly basis and annual allocations were lowered accordingly.
- As a general rule, if a WUG is found in different counties, the supply allocated to the WUG in each county was split based on the surface water demand. In cases where this demand was " 0 ," the supply was split equally between these counties. (The surface water demand for each entry WUG/county/basin was calculated by subtracting the allocated groundwater for that entry from that entity's total demand).
- Municipal contracts that were not identified as a municipal WUG were assumed to be a portion of County-Other and assigned to the appropriate county and basin unit.
- For non-municipal WUGs, contracts from water providers were used to determine contractual sources to various categories. Wherever possible, each contract was associated with a basin through available information.
- For non-municipal WUGs, some information was received from water rights information collected in the previous steps and entered in Table 3A. 1 on a WUG/county/basin basis. Ownership and use information for the available firm supplies was provided by the TCEQ Water Rights Database.
- Irrigation entries were compiled from contracts and firm water rights described later in this chapter.
- Livestock entries assumed livestock demands would be provided from local surface water supply sources. This is consistent with past Regional Water Planning procedures.
- In the 2006 Plan, mining WUGs with shortages in the year 2000 were assumed to be supplied from local surface supplies equal to their shortage. This amount was also carried out for the remaining planning periods. The 2011 Plan will adopt the amount identified in the 2006 Plan.

Data Collection

Entities that sell water to WUGs in the region were contacted in order to obtain an up-to-date list of their water commitments. This procedure was repeated at each tier of subsequent transactions until all of the contract water supplies provided by non-major water providers could be tracked to an end user, identified as a WUG or part of a WUG.

The remaining water supplies that were entered in Table 3H-1 are other permit amounts or assumed local supplies. These entries are generally non-municipal users. Moreover, with the exception of livestock and mining supplies, the only noncontract supplies that were considered for Table $3 \mathrm{H}-1$ are the supplies associated with the records listed in Table 3A-1.

Supply Allocation

After the data collection process was completed, the contract and non-contract supplies were allocated to each WUG on a county/basin basis. If a portion of the water acquired through a contract by a WUG was provided to another WUG, through a contract or direct retailing, or by using another intermediary seller, the amount associated with the initial WUG was modified accordingly to avoid double accounting of water. Within each category (county-other, manufacturing, mining, steamelectric, livestock, irrigation), all entities receiving water directly from the same source or obtaining water via contracts from the same provider/self provider and from the same source were aggregated into a single record.

Non-municipal contract supplies were allocated to a specific county/basin unit where possible. This involved the determination of the correct county and basin location for each recipient. Use of the historical data from the water use reports provided by TWDB was instrumental in this process. For example, the COH WWP currently has a wholesale contract with the manufacturing entity, Dixie Chemical Company. It was found that Dixie Chemical is using the water in Harris County in the San Jacinto-Brazos River Basin. Therefore, the current contract supply amount for Dixie Chemical would be added to the overall manufacturing supply available in Harris County, in the San Jacinto-Brazos Basin, and receiving water from the same source (in this case, Lake Livingston).

The allocation of the municipal contract supplies was more complex. Most of the water providers that receive water via a wholesale agreement have retail customers that are in their service areas. Retail customers are defined here as those recipients of water that pay for their service through some means other than a wholesale agreement (i.e., monthly billings). There is not a well-defined methodology for determining the amount of water available to these types of users. For the most part, the availability of water for these WUGs at the city/county level was assessed on a case-by-case basis. For those municipal WUGs that were divided into more than one basin, the availability to each basin was based on the basin's proportionate share of the city/county surface water demand.

For water rights for irrigation that were not found to be sold through contract, such as irrigation rights owned by individuals, the entire supply was allocated to irrigation. Irrigation contracts were used, where available, to determine what portion of a water provider's water right was actually sold for irrigation use. Most of the irrigation supplies are year-to-year contract supplies that are allocated differently with each growing season. For the most part, providers of irrigation water sell water to irrigators in their immediate vicinity. It was assumed that irrigation water rights provided water to the basin in which they originated unless known contracts allocated the water to another location. Contracted water supplies for irrigation were assumed to serve customers along the canal system in which it was conveyed.

The 2006 Plan assumed that livestock demands not met by groundwater were supplied by water available from local surface supply sources (i.e., stock ponds). Much of the mining demand for surface water also appeared to be supplied from local sources. However, it was assumed that these supplies would not increase in quantity over the planning period and alternative sources would be required to supplement any growth in demand. The year 2000 local supply quantity was held
constant through the year 2060. The 2011 Plan will retain the local supply volumes recommended in the 2006 Plan.

3.4.4.1 Municipal Contracts Allocation

Anahuac

The City of Anahuac receives 1,105 acre-feet per year from the CLCND. This amount was split between the Neches-Trinity and Trinity River Basins based on the surface water demand ratios, by basin.

Angleton

The City of Angleton receives approximately 2,016 acre-feet per year from Brazosport Water Authority (BWA) (nonmajor water provider), and provides 202 acre-feet per year (approximately 10 percent) to manufacturing in the Brazoria County/San Jacinto-Brazos Basin (assumed that the split is for the entire length of the contract between City of Angleton and BWA). The amount remaining for the City of Angleton is 1,815 acre-feet per year.

Bacliff MUD

Bacliff MUD is contracted to receive 1,373 acre-feet per year from GCWA for municipal use.

Bayou Vista

Bayou Vista receives 519 acre-feet per year from GCWA.

City of Baytown

Baytown Area Water Authority (BAWA) receives 17,534 acre-feet per year from COH and provides water to several water supplies and to the City of Baytown. BAWA provided information regarding the amounts distributed to each of its customers. It was assumed that the BAWA customers Fresh Water Supply District 1-A, Harris County Fresh Water Supply District 1-B, Harris County Fresh Water Supply District 27, Lake MUD, Country Terrace, and Cedar Bayou represent county-other in the Trinity-San Jacinto Basin. The allocation of BAWA's contract is shown below.

- Baytown

15,934 ac-ft/yr

- Harris County WCID 1

784 ac-ft/yr

- Harris County-Other (Trinity-San Jacinto)

816 ac-ft/yr
The amount of water that the City of Baytown receives was calculated based on the surface water demand. The part of Baytown located in Harris County is also located in two different basins, TrinitySan Jacinto and San Jacinto. The amounts entered in these basins were prorated based on the surface water demands.

Bellaire

Bellaire receives 1,310 acre-feet per year of blended surface water and groundwater from the COH . As the groundwater reduction plan for the area progresses the amount of groundwater used will decrease significantly. The entirety of this contract was assumed to be made up of surface water and was allocated to municipal use.

Bolivar Peninsula SUD

Bolivar SUD contracts to receive 5,550 acre-feet per year from LNVA. It was assumed that 1 acrefeet per year of this contract could be used to provide water to county-other in the Neches-Trinity basin, leaving 5,549 acre-feet per year available to Bolivar SUD. The contracted supply is projected to decrease from 5,550 acre-ft per year in 2010 to 5,300 acre-ft per year in 2060.

Brazoria

Brazoria has a contract with BWA for 336 acre-feet per year, and the entire contract was allocated to the City of Brazoria. The City of Brazoria is located in two different basins, the Brazos and BrazosColorado. The contract amount was prorated between these two basins based on the total water demand ratios for these two basins.

Bunker Hill Village

The COH provides 635 acre-feet per year of blended water to Bunker Hill Village. This entire supply was allocated as surface water as the portion of this supply from surface water will increase throughout the groundwater reduction plan.

Chimney Hill MUD

Chimney Hill MUD receives water under a contract from the COH . COH provides 426 acre-feet of groundwater/year to the MUD, and it was assumed the groundwater was obtained from the San Jacinto River Basin.

Clear Brook City MUD

The Clear Brook City MUD receives 1,680 acre-feet per year from the COH for municipal use. The MUD is a partner in the Southeast Water Purification Plant.

Clear Lake Shores

Based on information received from Galveston County WCID 12, this water provider serves Clear Lake Shores, Kemah, Lazy Bend (county-other), and a small number of customers in League City. Water provided to Kemah is sold wholesale to the City of Kemah, and then to other customers. All other sales by the district are carried out directly between WCID 12 and the customer. The WCID 12 contract from GCWA was split between Kemah and other customers in the district according to the ratio of usage between Kemah and WCID 12. The portion of water allocated to WCID 12 was further divided among Clear Lake Shores, League City, and county-other according to the number of connections served in each community. League City also receives a majority of its water from the GCWA. The resulting volumes for each WUG are:

- Kemah $64 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
- League City (Galveston County) $13 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
- Lazy Bend (WCID 12)
$799 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
- Clear Lake Shores
$155 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$

Central Harris County Regional Water Authority (CHCRWA)

CHCRWA has a contract with the COH for 2,375 acre-feet per year.

Clute

The City of Clute has a contract with BWA for 1,120 acre-feet per year; the entire contract was allocated to City of Clute.

County-Other in Brazoria County

BWA has contracts with Clemens Unit-TDCJ and Wayne Scott Unit-TDCJ for 420 acre-feet per year. The demands of these units were considered part of the county-other demand; therefore, since these units are located in Brazoria County, they were allocated to county-other in Brazoria County. The portion for the Clemens Unit was allocated to the Brazos-Colorado Basin while the Wayne Scott Unit supply contract was allocated to the San Jacinto-Brazos River Basin.

County-Other in Fort Bend County

Fort Bend County WCID 2 has an option contract with GCWA for 11,762 acre-feet per year. This contract was reduced so that GCWA contracts did not exceed supplies. Based on the information received from the contacted person, this amount, if used, would be split among its customers. Since GCWA provides retail water to its customers, an exact amount is difficult to estimate; therefore, GCWA estimated the amounts for each entity listed below:

- Missouri City $87 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
- Sugar Land (San Jacinto-Brazos River Basin) $30 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
- Harris County MUD 122 (assumed Harris County-other, San Jacinto River Basin) 195 ac -ft/yr
- Fort Bend County, unincorporated area (assumed Fort Bend County-other, San Jacinto-Brazos River Basin)
$73 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
- Stafford

6,194 ac-ft/yr
The amount indicated for Stafford and Missouri City was divided by basin and county according to surface water demand.

County-Other in Harris County

Several water providers including WWPs provide water to county-other in Harris County. These contributions are described below.

The provider with the alpha number 1095 in Appendix $3 H$ is the La Porte Area Water Authority (LAWA). LAWA has a contract with COH for $8,734.6$ acre-feet per year. According to the information received from LAWA, LAWA provides water to the cities of La Porte, Shoreacres, and Morgans Point. The volumes of water are shown below.

- Shoreacres $406 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
- Morgans Point (entered as Harris County-Other) 688 ac-ft/yr
- City of La Porte

8,656 ac-ft/yr

As Morgans Point resides within both the San Jacinto and San Jacinto-Brazos River Basins, the water provided to county-other was split based on area. Because Morgans Point is divided fairly equally by the two basins, the 616 acre-feet per year was split in half.

North Channel Water Authority receives 6,682 acre-feet per year from COH that can be split among its customers. A summary of water usage for several years was provided by NCWA and used to prorate the COH contract amount among NCWA customers on a basis of their total water use. Municipal users that were not listed as individual WUGs were combined into county-other. The amount of contract water allocated to each WUG is shown below.

- Harris County FWSD 6
- Harris County FWSD 47
- Harris County FWSD 51
- Harris County MUD 53
- Harris County WCID 21
- Harris County WCID 36
- Harris County WCID 84
- Pine Trails Utility
- County-Other
- Manufacturing
$187 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
$288 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
1,539 ac-ft/yr

836836 ac-ft/yr
$913 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
$802 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
$310 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
$480 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
$281 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
$1,046 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$

The City of Pasadena receives water from COH , and it is one of the Southeast Purification Plant participants. Contract information was not available from the City of Pasadena and therefore information used in the 2006 Region H Regional Water Plan was used for the current plan. Based on the information received from the City of Pasadena for the 2006 Regional Water Plan, its customers are City of Seabrook (which in turn provides some of this water to the City of El Lago), manufacturing companies located in Harris County (San Jacinto-Brazos River Basin), and Clear Lake City Water Authority (CLCWA). These amounts are shown below.
$\begin{array}{ll}\text { - Seabrook and El Lago } & 1,120 \mathrm{ac}-\mathrm{ft} / \mathrm{yr} \\ \text { - County-Other } & 3,360 \mathrm{ac}-\mathrm{ft} / \mathrm{yr} \\ \text { - Manufacturing } & 5,040 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}\end{array}$
The remaining supply from Pasadena was assumed to be available to satisfy the demands of the City of Pasadena.

The Fort Bend County WCID 2 contract allocation was described under county-other in Fort Bend County. The amount allocated to county-other in Harris County is 349 acre-feet per year.

Baytown Area Water Authority provides water to several communities in Harris County that are not listed as WUGs. This water was allocated to Harris county-other. The BAWA contract allocation is described under Baytown.

Municipal customers of the COH that were not itemized as WUGs were combined into county-other, based on the customer's location. COH provides groundwater to the San Jacinto, San JacintoBrazos, and Trinity-San Jacinto River Basins for use by county-other WUGs.

County-Other in Galveston County

The 275 acre-feet contract between GCWA and Bayview MUD was allocated to county-other in Galveston County. The COH has a contract to supply Galveston County with 18,477 acre-feet per year for municipal use and it was assumed that this amount provided supply to the portion of Galveston County in the San Jacinto-Brazos basin. It was also assumed that the infrastructure that provides LNVA water to Bolivar SUD also provides water to county-other in the Neches-Trinity basin.

County-Other in Montgomery County

COH provides 381 acre-feet per year to Montgomery County MUD 98. The entirety of this amount was allocated to county-other.

County-Other in Polk County

The 20 acre-feet per year TRA supply allocated is the sum of contracts to Memorial Point Townhouse Association and Fountain Lake Townhouse Association.

County-Other in San Jacinto County

Waterwood MUD has a contract for 560 acre-feet per year from the Trinity River Authority. This supply was allocated to county-other in the Trinity River Basin.

County-Other in Trinity County

Three contracts from TRA were entered as county-other category in Trinity County. One of the contracts for 1,000 acre-feet per year, listed for "Individual Domestic Use" was entirely allocated to county-other in Trinity County. Westwood Shores MUD is the recipient of 108 acre-feet per year from TRA, and it represents part of the demand of the county-other category in Trinity County. Westwood Shores POA receives 10 acre-feet per year from the TRA. The other contract entered in this category is part of the Trinity County Regional Water Supply System (TCRWSS) contract. TCRWSS has a contract with TRA for 3,360 acre-feet per year. TCRWSS provides water, on a retail basis, to the WUGs of Trinity, Groveton (located in Region H and I), and Riverside Water Supply. It was assumed that enough water would be provided to each WUG TCRWSS serves to meet demands and that the remaining contract would be allocated to county-other in Trinity County.

County-Other in Walker County

Most of the contract of 22,403 acre-feet per year that the Huntsville Regional Water Supply System (HRWSS) has with TRA was allocated to the City of Huntsville. A small portion of this contract (15 percent) was allocated to county-other, based on the assumption that there are unincorporated areas in the vicinity of Huntsville that are supplied by the city. This amount was split by basin based on the water demand ratios.

Crosby

Crosby MUD serves the City of Crosby and has a contract with SJRA for 1,120 acre-feet per year. Based on the information received from the City of Crosby, all the water is used for residential purposes except a small amount that is supplied to a manufacturing company located in Harris County. The City of Crosby receives 1,050 acre-feet per year. The remaining 70 acre-feet is allocated to the manufacturing category in Harris County, San Jacinto River Basin.

Deer Park

The City of Deer Park has a contract with COH for 3,956 acre-feet per year, and Deer Park uses the entire amount for residential purposes. The contract was split by basins based on the surface water demand ratios.

Dickinson

Galveston County WCID 1 has a contract with GCWA for 5,224 acre-feet per year and provides this water to Dickinson, Texas City, and League City, which are all retail customers. The contract amount, after adjustment, is equal to 3,232 acre-feet per year. Based on the information received from Galveston County WCID 1, it provides water to 50 houses in Texas City, League City pays for 1 mgd (it currently uses 150,000 gallons/day), and the rest goes to Dickinson. For all decades, Texas City was allocated an amount equal to 2.5 persons/house and a 150 gallons per day per person. League City was allocated the 1 mgd contract.

El Lago

The City of Seabrook receives water from the City of Pasadena and then sells the water to El Lago. The volume of water provided by Pasadena was split between Seabrook and El Lago based on surface water demands. The contract with the City of Pasadena is for 1,120 acre-feet per year.

Freeport

BWA has a contract with Freeport for 2,240 acre-feet per year. Based on the information received from the City of Freeport, 85 percent of this contract is allocated to the City of Freeport, and the remaining 15 percent is allocated to different manufacturers in the San Jacinto-Brazos and Brazos River Basins.

Friendswood

Friendswood has a contract with COH for 6,719 acre-feet per year and is one of the Southeast Purification Plant participants. The contract is entirely allocated to municipal use for the City of Friendswood. The contract was split in two entries in different counties, based on the surface water demand ratios for the two counties.

Galena Park

Galena Park has a contract with COH for 1,008 acre-feet per year. Galena Park personnel indicated that 94.6 percent of this contract goes to municipal use for the City of Galena Park. The remaining 5.4 percent of the contract amount is supplied to manufacturing use in Harris County in the San Jacinto River Basin. Galena Park receives 954 acre-feet per year. Manufacturing in the San Jacinto River Basin receives the balance of the contract, or 54 acre-feet per year.

Galveston

Galveston receives 24,217 acre-feet per year from GCWA. This water is distributed among the city and two wholesale customers, Galveston County MUD 1 and Jamaica Beach. Galveston no longer serves customers that are not located on Galveston Island. As these customers receive water on a retail basis, it is difficult to determine a set amount provided to each one. Instead, this volume of water was divided among the three recipients according to their surface water demands in each decade.

Galveston County MUD 1

The Galveston County MUD 1 surface supply is divided out of the total supply from GCWA to the City of Galveston according to its demand ratio among the other two recipients as described under Galveston.

Galveston County WCID 12

The division of the GCWA supply to Galveston County WCID 12 and the WUGs it provides water to, is described under Clear Lake Shores.

Groveton

Groveton receives 119 acre-feet per year from TCRWSS in 2010, as explained in the county-other in Trinity County section above. This allocation represents the amount supplied to the portion of Groveton located within Region H.

Harris County FWSD 6

Harris County FWSD is provided 187 acre-feet of water per year from NCWA as described under county-other in Harris County.

Harris County FWSD 47

Harris County FWSD 47 receives 288 acre-feet per year of water from NCWA. This amount was allocated as described under county-other for Harris County.

Harris County FWSD 51

Harris County FWSD 51 is also a customer of NCWA and is provided a portion of water according to the description under county-other in Harris County. The estimated supply to FWSD 51 is
1,539 acre-feet per year.

Harris County MUD 8

COH has a contract with Harris County MUD 8 to provide 420 acre-feet of groundwater.

Harris County MUD 53

NCWA provides an estimated 836 acre-feet per year of supply to Harris County MUD 53. This estimate is described for county-other in Harris County.

Harris County MUD 55

The COH provides 3,877 acre-feet per year to Harris County MUD 55. This contract is perpetual and was assumed to continue throughout the planning periods.

Harris County MUD 158

Harris County MUD 158 receives 411 acre-feet of groundwater per year from COH. It was assumed that this water originated from the San Jacinto River Basin.

Harris County MUD 261

Harris County MUD 261 and Windfern Forest UD receive 140 acre-feet of groundwater/year from COH . This amount was split between the two districts according to surface water demands.

Harris County WCID 1

BAWA has a contract to provide 784 acre-feet per year to Harris County WCID 1.

Harris County WCID 21

NCWA provides 913 acre-feet of water per year to Harris County WCID 21 as described under county-other in Harris County.

Harris County WCID 36

The description for county-other in Harris County explains the allocation of water from NCWA and includes the 802 acre-feet per year provided to Harris County WCID 36.

Harris County WCID 84

Harris County WCID 84 provides 310 acre-feet of water per year to Channelview from its source, NCWA. The assignment of this supply is described under county-other in Harris County.

Hedwig Village

Memorial Villages Water Authority (MVWA) has a contract with COH for 747 acre-feet per year of blended water. It was assumed for planning purposes that this water originated from a surface source. Based on the information received from MVWA, this contract is split between Hedwig Village, Piney Point Village, and Hunters Creek. Since these entities are retail customers, without information on exact amounts, the contract was split among the customers based on their total water demand ratios for each planning period.

Hitchcock

Hitchcock is a customer of GCWA and is contracted to receive 1,731 acre-feet per year on a perpetual basis.

Houston

The City of Houston, in its capacity as water provider to residents within the city limits, receives its water from several sources that are operated as a system. The available supply of this system, less contracts to other parties, was assumed to make up the available supply for Houston. This total volume was distributed among the individual occurrences of the Houston WUG in each basin and county.

Additionally, the Clear Lake City Water Authority provides a portion of its contract from COH to areas of Houston. As some of the authority's contracts are indefinable, it was assumed that Webster and Pasadena received a share of water prorated by the area served in each community. The amount of water remaining was assumed to serve Clear Lake (a portion of the Houston WUG). The amounts of water provided to each CLCWA customer are shown below.

- City of Houston 8,076 ac-ft/yr
- City of Pasadena 8,619 ac-ft/yr
- Taylor Lake Village $1,730 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$
- Nassau Bay

2,184 ac-ft/yr

- Manufacturing

1,792 ac-ft/yr

Humble

The City of Houston provides 47 acre-feet of groundwater per year to Humble.

Hunters Creek Village

This entity receives its water from the MVWA. As described under Hedwig Village, the amount of water that MVWA receives from COH was shared among its customers based on the surface water demand ratios.

Huntsville

Huntsville receives 22,403 acre-feet of groundwater per year from the Huntsville Regional Water Supply System (HRWSS). Approximately 15 percent of this water is allocated to county-other to support surrounding communities. The remaining supply was allocated to the City of Huntsville.

Jacinto City

Jacinto City has a contract with COH for 1,120 acre-feet per year, and the entire amount of the contract is allocated to municipal use in Jacinto City.

Jamaica Beach

The City of Galveston provides water to Jamaica Beach, as described under Galveston. The portion of water provided to Jamaica Beach for each planning period was prorated from the GCWA supply according to the surface water demands of each end user customer.

Jersey Village

The City of Jersey village has a contract with COH for 840 acre-ft per year of groundwater.

Kemah

Galveston County WCID 12 provides water to Kemah, as described for Clear Lake Shores.

La Marque

The GCWA contract to La Marque was reduced from 3,207 to 2,224 acre-feet per year. The contract is entirely allocated for municipal usage.

La Porte

The La Porte Area Water Authority receives water from COH and then distributes water to the City of La Porte and other customers. The City of La Porte receives 8,656 acre-feet per year, as described previously at county-other in Harris County. This contract was split between the city's WUGs in the San Jacinto and San Jacinto-Brazos River Basins.

Lake Livingston Water Supply \& Sewer Service Company

The Lake Livingston Water Supply \& Sewer Service Company has a contract for 954 acre-feet per year from the TRA. The supply was split according to demand.

Lake Jackson

Lake Jackson receives water from BWA, and the entire contract of 2,240 acre-feet per year is allocated to municipal use for Lake Jackson.

League City

League City receives the majority of its water from two providers, GCWA and Galveston County WCID 1. The League City contract with GCWA is for 2,307 acre-feet per year. League City also contracts for 1 mgd with Galveston County WCID 1. Galveston County WCID 12 also provides a small amount of water to customers in a portion of League City in Harris County. This is shown under Clear Lake Shores.

Livingston

Livingston receives water from the Livingston Regional Water Supply System. The entire amount, 5,601 acre-feet per year, is allocated to Livingston for its municipal use.

Missouri City

Missouri City has a contract with GCWA for 16,802 acre-feet per year. However, this amount was reduced to 9,487 to reflect the supply available from the GCWA. The other provider for Missouri City is Fort Bend WCID 2. The amount received by Missouri City from Fort Bend County WCID 2 is shown above, at county-other in Fort Bend County. Missouri City in Fort Bend County is split by basins based upon surface water demand ratios.

Nassau Bay

Nassau Bay receives water from Clear Lake City Water Authority (CLCWA). The current amount contracted, 2,184 acre-feet per year, is assumed to remain constant through 2060. Nassau Bay uses the whole amount contracted for its municipal use.

North Fort Bend Water Authority (NFBWA)

The COH has a contract with the North Fort Bend Water Authority which supplies 21,841 acre-feet per year of water. The COH will activate the supply to the (NFBWA) in the year 2013.

North Harris County Regional Water Authority

NHCRWA has a contract with COH for 11 acre-feet per year until 2010. Beginning in 2010, the authority will receive 34,714 acre-feet of surface water/year.

Oyster Creek

Oyster Creek receives water from BWA, and the entire contract, 106 acre-feet per year, is allocated for municipal use in Oyster Creek.

Pasadena

Pasadena receives water from COH and from CLCWA. The COH contract allocation is described under county-other in Harris County. The CLCWA contribution to Pasadena was described above under Houston.

Pearland

Pearland has a contract with GCWA with an available supply of 15,675 acre-feet per year, valid until 2010, and a contract with COH for 560 acre-feet per year until 2041. Pearland is located in Harris and Brazoria Counties. Therefore, these contracts are split between the two counties based on surface water demand.

Pecan Grove

Pecan Grove receives 3,101 acre-ft of water contracted from the BRA via the GCWA. Although Pecan Grove has already contracted supply from the BRA, construction of a surface water treatment plant to treat the raw water will not begin construction until 2010. Pecan Grove is located in Fort Bend County and the contract is allocated for 3,101 acre feet per year for municipal use.

Pine Trails Utility

Pine Trails Utility is a customer of NCWA and receives 480 acre-feet per year as estimated under county-other in Harris County.

Piney Point Village

Memorial Villages Water Authority (MVWA) provides Piney Point Village with water from its contract with COH . As described above, under Hedwig Village and Hunters Creek Village, this contract is split between the MVWA customers.

Richmond

The City of Richmond has two municipal contracts with the Brazos River Authority for a total amount of 3,000 acre-feet per year.

Richwood

Richwood receives water from BWA, and the entire contract of 263 acre-feet per year is allocated for municipal use by Richwood.

Riverside WS Corp

Riverside WS Corp receives 20 acre-feet of water/year from TCRWS as mentioned above in countyother for Trinity County. This amount was allocated to Walker County as San Jacinto County had no shortages for this WUG.

Rosenberg

Rosenberg receives water from the Brazos River Authority and the contract of 4,500 acre-feet per year is allocated for municipal use by Rosenberg.

San Jacinto WSC

San Jacinto Water Supply Corporation receives 280 acre-feet per year from TRA. Coldspring is included in their service area, but since Coldspring has enough groundwater to meet its demand, this contract was allocated entirely to the San Jacinto Water Supply Company.

San Leon

San Leon receives 2,059 acre-feet per year of water from GCWA. The entire contract amount is allocated to the municipal use in San Leon.

Santa Fe

Santa Fe (Galveston County WCID 8) has a contract with GCWA for 1,154 acre-feet per year.

Seabrook

The Pasadena contract was split between El Lago and Seabrook as described under El Lago.

Shoreacres

La Porte provides water to Shoreacres, as shown in the allocation of the contract between the La Porte Area Water Authority and COH described under county-other in Harris County.

South Houston

As one of the Southeast Water Purification Plant partners, South Houston has a contract with COH for 4199 acre-feet per year. The contract is entirely allocated to municipal use for the City of South Houston.

Southside Place

Southside Place has a contract with COH for 319 acre-feet per year, and the entire contract is used to meet its municipal demands.

Stafford

Stafford receives water from Fort Bend County WCID 2. Fort Bend County WCID 2 has an option contract with GCWA. The contract allocation is described above at county-other in Fort Bend County. The amount that Stafford receives is split between Fort Bend County and Harris County based on surface water demand ratios. The amount allocated to the part of Stafford located in Fort Bend County is split by basins, between San Jacinto and San Jacinto-Brazos River Basins, based on their surface water demand ratios.

Sugar Land

Sugar Land has two water providers. Fort Bend County WCID 2 provides water to some residents of Sugar Land, and the amount allocated is described under county-other in Fort Bend County. This amount is assumed to serve the portion of Sugar Land located in the San Jacinto-Brazos River Basin. GCWA has a contract with the City of Sugar Land for 22,403 acre-feet per year. This contract was adjusted to 12,533 acre-feet per year and is entirely allocated to the City of Sugar Land for its municipal use. The GCWA contract amount was split by basins based on the surface water demand ratios.

Sunbelt FWSD

The City of Houston provides 187 acre-feet of groundwater per year to the Sunbelt FWSD, in addition to 299 acre-feet of blended water/year. This blended supply is assumed to be surface water in Appendix $3 H$. Sunbelt is also a member of the COH Groundwater Reduction Plan.

Taylor Lake Village

Clear Lake City Water Authority provides 1,730 acre-feet of water per year to Taylor Lake Village. The allocation of the CLCWA contract with COH was described under Houston.

Texas City

Texas City has two water providers. The entity providing the largest amount is GCWA. The contract from GCWA is 12,016 acre-feet per year and is used entirely by the City of Texas City for its municipal water usage. The other provider is Galveston County WCID 1, and the allocation of its contract with GCWA is summarized under Dickinson. This small amount of water was estimated to be approximately 21 acre-feet per year.

The Woodlands

The Woodlands receives 11,303 acre-feet per year of groundwater from SJRA. The available groundwater supply is projected to be diminished over time as a result of groundwater availability and projected surface water conversion.

Tiki Island

Tiki Island receives water from GCWA under a contract for 415 acre-feet per year.

Trinity

Trinity receives water from TCRWSS. The allocation of the TCRWSS contract is described under county-other in Trinity County and is equal to the TWDB demands for Trinity.

Trinity Bay Conservation District

The Trinity Bay Conservation District receives 663 acre-feet per year from CLCND. LNVA provides an additional sum of water on an as-needed basis to the district through the Winnie Treatment Plant. When the new Winnie Water Treatment Plant is completed, the district will have the capacity to receive 2.4 mgd of water from LNVA. Therefore, it is assumed that the available supply from the Rayburn-Steinhagen system is 2,688 acre-feet per year. These supplies were split between the Trinity and Neches-Trinity River Basins according to demand.

Trinity Rural WS Corp

The Trinity Rural WSC supply is provided 1,240 acre-feet per year by TRA. The supply was split between the Polk, Trinity and Walker Counties based on demand.

Webster

The City of Webster has a contract with COH for 4,536 acre-feet per year and is using the entire contract amount for its municipal water use. CLCWA provides an additional 4,475 acre-feet per year from their surface water allocation from COH .

West Harris County Regional Water Authority

WHCRWA will begin a contract with COH for 20,437 acre-feet per year in 2010. This amount was allocated between the portions of WHCRWA located in Harris and Fort Bend Counties based on surface water demand.

West University Place

The City of West University Place has a contract with COH for 2,053 acre-feet of groundwater/year, and it is using the entire contract amount for its municipal water use.

Windfern Forest UD

Windfern Forest UD shares a 140 acre-feet per year contract with Harris County MUD 261. This amount was split between the two districts according to their demands in each decade as described under Harris County MUD 261.

3.4.4.2 Manufacturing Supplies

BRAZORIA COUNTY

Brazoria County manufacturing supplies are allocated below.

| Provider | $\mathbf{2 0 1 0}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 3 0}$ | $\mathbf{2 0 4 0}$ | $\mathbf{2 0 5 0}$ | $\mathbf{2 0 6 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (acre-feet/year) | | | | | |
| Angleton | 202 | 202 | 202 | 202 | 202 | 202 |
| Dow | 137,475 | 137,475 | 137,475 | 137,475 | 137,475 | 137,475 |
| Freeport | 336 | 336 | 336 | 336 | 336 | 336 |
| GCWA | 45,010 | 45,010 | 45,010 | 45,010 | 45,010 | 45,010 |
| BRA | 16,000 | 16,000 | 16,000 | 16,000 | 16,000 | 16,000 |
| Individual
 Water Rights | 11,354 | 11,422 | 11,422 | 11,422 | 11,422 | 11,422 |

The supply listed by the City of Angleton is provided from their contract from BWA. The Dow supply represents the company's firm water right and assumes that the full quantity is either contracted to other entities or used for the Dow facility itself. The 16,000 acre-feet listed from BRA is contracted to Dow. Freeport allocates approximately 15 percent of its contract from BWA to manufacturing, providing the value listed above. The sum of GCWA contracts to manufacturers in the San JacintoBrazos River Basin totals 45,010 acre-feet per year (after adjustment in order to observe available supplies). All contract amounts were allocated to the basin in which the consumer was located. Water rights intended for manufacturing were allocated to the basin the source originated in. Individual water rights in the Brazos-Colorado basin total 12,019 acre-feet per year and are available to Region H and Region K. A portion of these water rights are allocated to steam electric demands in Region K. The remainder is allocated to Manufacturing in Brazoria County, shown in the table above.

FORT BEND COUNTY

Fort Bend County manufacturing supplies are allocated below.

Provider	$\mathbf{2 0 1 0}$ ac-ft/yr	$\mathbf{2 0 2 0}$ ac-ft/yr	$\mathbf{2 0 3 0}$ ac-ft/yr	$\mathbf{2 0 4 0}$ ac-ft/yr	$\mathbf{2 0 5 0}$ ac-ft/yr	$\mathbf{2 0 6 0}$ ac-ft/yr
BRA	400	400	400	400	400	400
FBC WCID 1	1,000	1,000	1,000	1,000	1,000	1,000

The Fort Bend County WCID 1 has a contract with Imperial Sugar for 1,000 acre-feet per year. Originally, this contract was for the entire 20,000 acre-feet per year yield from this right. However, this was reduced due to Imperial Sugar's plant closure. This contract was allocated to the San Jacinto-Brazos River Basin. The 400 acre-feet per year shown from BRA is contracted to Vulcan Materials.

GALVESTON COUNTY

Galveston County manufacturing supplies are allocated below.

Provider	2010 ac-ft/yr	2020 ac-ft/yr	2030 ac-ft/yr	2040 ac-ft/yr	2050 ac-ft/yr	2060 ac-ft/yr
GCWA	68,414	68,414	68,414	68,414	68,414	68,414

The GCWA amount represents the sum of contracts between the Gulf Coast Water Authority and manufacturers in Galveston County, San Jacinto-Brazos River Basin. This sum is adjusted so that the total GCWA contracts do not exceed supplies.

HARRIS COUNTY

Harris County manufacturing supplies are allocated below.

Provider	$\mathbf{2 0 1 0}$ ac-ft/yr	$\mathbf{2 0 2 0}$ ac-ft/yr	$\mathbf{2 0 3 0}$ ac-ft/yr	$\mathbf{2 0 4 0}$ ac-ft/yr	$\mathbf{2 0 5 0}$ ac-ft/yr	$\mathbf{2 0 6 0}$ $\mathbf{a c - f t / y r}$
COH	379,312	379,312	379,312	379,312	379,312	379,312
Crosby	70	70	70	70	70	70
CLCWA	1,792	1,792	1,792	1,792	1,792	1,792
Galena Park	54	54	54	54	54	54
NCWA	1,046	1,046	1,046	1,046	1,046	1,046
Pasadena	5,040	5,040	5,040	5,040	5,040	5,040
SJRA	75,703	75,703	75,703	75,703	75,703	75,703

The COH amount includes Houston contracts to manufacturers in Harris County. The appropriate portions of the contract sum were allocated to the basin in which the manufacturer was located. The supplies from Crosby and Galena Park represent portions of their contracted supplies provided for manufacturing. The Pasadena supply was split between the San Jacinto and San Jacinto-Brazos River Basins according to surface water demand. The sum of SJRA contracts was split according to the location of the contract customer.

A portion of the water provided by COH , equal to 23,404 acre-feet per year, is actually contracted to Lyondell-Citgo Refining. This water is used for refinery processes by LCR as well as 16,733 acrefeet/year of steam-electric demand by a customer of LCR. Attempts were made to contact LCR regarding how this water is used, which user receives the water first, and which portion of the water is reused between the two users. Lyondell-Citgo was unable to provide any information regarding this use pattern and, therefore, the total sum of water has been shown in the shortage analysis and the table above with COH as the provider.

3.4.4.3 Irrigation Supplies

BRAZORIA COUNTY

Brazoria County irrigation allocations are tabulated below.

Irrigator	$\mathbf{2 0 1 0}$ ac-ft/yr	$\mathbf{2 0 2 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y r}$	$\mathbf{2 0 3 0}$ ac-ft/yr	$\mathbf{2 0 4 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y r}$	$\mathbf{2 0 5 0}$ ac-ft/yr	$\mathbf{2 0 6 0}$ ac-ft/yr
GCWA	13,694	13,694	13,694	13,694	13,694	13,694
Individual Water Rights	10,529	10,529	10,529	10,529	10,529	10,529

The water supply listed as individual water rights consists of the firm water rights within each basin. It was assumed that this water was used for agriculture within the source basin.

CHAMBERS COUNTY

Chambers County irrigation allocations are tabulated below.

Irrigator	$\mathbf{2 0 1 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y r}$	$\mathbf{2 0 2 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y}$	$\mathbf{2 0 3 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y r}$	$\mathbf{2 0 4 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y r}$	$\mathbf{2 0 5 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y r}$	$\mathbf{2 0 6 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y r}$
CLCND	40,000	40,000	40,000	40,000	40,000	40,000
LNVA	38,000	38,000	38,000	38,000	38,000	38,000
TRA	16,818	16,552	16,370	16,170	15,941	15,669
Individual Water Rights	23,995	23,995	23,995	23,995	23,995	23,995

The CLCND amount represents the volume of water provided to Devers Canal customers in the Neches-Trinity River Basin by the CLCND. The LNVA amount is the sum of annual irrigation contracts to individuals in the Neches-Trinity River Basin. The water supplied by TRA represents the amount contributed to the Devers Canal system, split between Chambers and Liberty Counties according to irrigation surface demand in the basins served by the canal. In Chambers County, this water was only provided to the Neches-Trinity River Basin. Individual water rights for irrigation were assumed to be applied within the basin from which they originated.

FORT BEND COUNTY

Fort Bend County irrigation allocations are tabulated below.

Irrigator	$\mathbf{2 0 1 0}$ ac-ft/yr	$\mathbf{2 0 2 0}$ ac-ft/yr	$\mathbf{2 0 3 0}$ ac-ft/yr	$\mathbf{2 0 4 0}$ ac-ft/yr	$\mathbf{2 0 5 0}$ ac-ft/yr	$\mathbf{2 0 6 0}$ ac-ft/yr
GCWA	2,143	2,143	2,143	2,143	2,143	2,143
NRG	12,000	12,000	12,000	12,000	12,000	12,000

The GCWA supply represents the adjusted contract amounts between GCWA and several irrigators in the San Jacinto-Brazos River Basin. The supply from NRG represents the firm irrigation supply from the Brazos River Basin contracted to Richmond Irrigation. It was assumed that this entire amount was used within the Brazos River Basin. The balance of this water right was allocated to steam-electric in the Brazos basin.

GALVESTON COUNTY

Galveston County irrigation allocations are tabulated below.

Irrigator	$\mathbf{2 0 1 0}$ ac-ft/yr	$\mathbf{2 0 2 0}$ ac-ft/yr	$\mathbf{2 0 3 0}$ ac-ft/yr	$\mathbf{2 0 4 0}$ ac-ft/yr	$\mathbf{2 0 5 0}$ ac-ft/yr	$\mathbf{2 0 6 0}$ ac-ft/yr
GCWA	142	142	142	142	142	142

The GCWA allocated amounts equal the contracted volume of water to irrigation users in Galveston County.

HARRIS COUNTY

Harris County irrigation allocations are tabulated below.

Irrigator	$\mathbf{2 0 1 0}$ ac-ft/yr	$\mathbf{2 0 2 0}$ ac-ft/yr	$\mathbf{2 0 3 0}$ ac-ft/yr	$\mathbf{2 0 4 0}$ ac-ft/yr	$\mathbf{2 0 5 0}$ ac-ft/yr	$\mathbf{2 0 6 0}$ ac-ft/yr
SJRA	1,476	1,476	1,476	1,476	1,476	1,476
Individual Water Rights	1,355	1,355	1,355	1,355	1,355	1,355

The SJRA amount is equal to the current irrigation contracts between SJRA and customers in Harris County. It was assumed that these annual contracts ran perpetually and that they served irrigation demands in the San Jacinto River Basin.

LIBERTY COUNTY

Liberty County irrigation allocations are tabulated below.

Irrigator	$\mathbf{2 0 1 0}$ $\mathbf{a c - f t / y r}$	$\mathbf{2 0 2 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y r}$	$\mathbf{2 0 3 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y r}$	$\mathbf{2 0 4 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y r}$	$\mathbf{2 0 5 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y r}$	$\mathbf{2 0 6 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y r}$
COH	33,000	33,000	33,000	33,000	33,000	33,000
Devers Canal	2,500	2,500	2,500	2,500	2,500	2,500
LNVA	17,200	17,200	17,200	17,200	17,200	17,200
TRA	10,682	10,948	11,130	11,130	11,559	11,831

The COH supply was purchased from the Dayton Canal Irrigation Company and is assumed to be provided to irrigators within the Trinity River Basin. The Devers Canal irrigation supply listed above is from a water right from the Trinity River and was split between the basins served by the Devers Canal system based on demand. This supply has recently been purchased by the Lower Neches Valley Authority (LNVA). The LNVA amount is the sum of the authority's contracts to individual farmers, assumed to be located in the Neches-Trinity River Basin. The volume of water provided to irrigation by TRA is Liberty County's share of the TRA contribution to the Devers Canal system. The water rights available to irrigation in Liberty County were allocated to the basin in which the supply originated.

MONTGOMERY COUNTY

Montgomery County irrigation allocation is tabulated below.

Irrigator	2010 ac-ft/yr	2020 ac-ft/yr	2030 ac-ft/yr	2040 ac-ft/yr	2050 ac-ft/yr	2060 ac-ft/yr
SJRA	880	880	880	880	880	880

The SJRA amount is the sum of water contracts between SJRA and irrigators in Montgomery County. These year to year contracts were assumed to be renewed through 2060.

SAN JACINTO COUNTY

San Jacinto County irrigation allocation is tabulated below.

Irrigator	$\mathbf{2 0 1 0}$ ac-ft/yr	$\mathbf{2 0 2 0}$ ac-ft/yr	$\mathbf{2 0 3 0}$ ac-ft/yr	$\mathbf{2 0 4 0}$ $\mathbf{a c}-\mathrm{ft} / \mathbf{y r}$	$\mathbf{2 0 5 0}$ $\mathbf{a c - f t / y r}$	$\mathbf{2 0 6 0}$ $\mathbf{a c - f t / y r}$
TRA	135	135	135	135	135	135

The TRA amount allocated is the sum of two contracts between Royal Pines and Waterwood National Resort and TRA.

TRINITY COUNTY

Trinity County irrigation allocation is tabulated below.

Irrigator	$\mathbf{2 0 1 0}$ ac-ft/yr	$\mathbf{2 0 2 0}$ ac-ft/yr	$\mathbf{2 0 3 0}$ ac-ft/yr	$\mathbf{2 0 4 0}$ ac-ft/yr	$\mathbf{2 0 5 0}$ ac-ft/yr	$\mathbf{2 0 6 0}$ ac-ft/yr
TRA	290	290	290	290	290	290

The TRA amount allocated is a lump sum of contracts between several water recipients and TRA. The sum of these contracts, 290 acre-feet per year, is the sum of all the individual irrigation amount contracts in Trinity County.

3.4.4.4 Mining Supplies

FORT BEND COUNTY

Fort Bend County mining supplies are allocated below:

Provider	2010 ac-ft/yr	2020 ac-ft/yr	2030 ac-ft/yr	2040 ac-ft/yr	2050 ac-ft/yr	2060 ac-ft/yr
GCWA	583	583	583	583	583	583

The GCWA contract provides water to Texas Brine in the San Jacinto-Brazos River Basin.

3.4.4.5 Steam-Electric Supplies

CHAMBERS COUNTY

Chambers County steam-electric supplies are allocated below:

Provider	$\mathbf{2 0 1 0}$ ac-ft/yr	$\mathbf{2 0 2 0}$ ac-ft/yr	$\mathbf{2 0 3 0}$ ac-ft/yr	$\mathbf{2 0 4 0}$ ac-ft/yr	$\mathbf{2 0 5 0}$ ac-ft/yr	$\mathbf{2 0 6 0}$ ac-ft/yr
NRG	30,000	30,000	30,000	30,000	30,000	30,000

The portion shown above is provided through Water Right 3460903926 from Cedar Bayou owned by NRG.

FORT BEND COUNTY

Fort Bend County steam-electric supplies are allocated below:

Provider	2010 ac-ft/yr	2020 ac-ft/yr	2030 ac-ft/yr	2040 ac-ft/yr	2050 ac-ft/yr	2060 ac-ft/yr
NRG	111,711	111,711	111,711	111,711	111,711	111,711

The sum of supplies represents two individual rights owned by NRG for use in the Brazos River Basin (Water Rights 3461205320 and 3461205325 (28,711 acre-feet per year)) and a contract from BRA for 83,000 acre-feet per.

GALVESTON COUNTY

Galveston County steam-electric supplies are allocated below:

Provider	$\mathbf{2 0 1 0}$ ac-ft/yr	$\mathbf{2 0 2 0}$ ac-ft/yr	$\mathbf{2 0 3 0}$ ac-ft/yr	$\mathbf{2 0 4 0}$ ac-ft/yr	$\mathbf{2 0 5 0}$ ac-ft/yr	$\mathbf{2 0 6 0}$ ac-ft/yr
GCWA	2,231	2,231	2,231	2,231	2,231	2,231

The GCWA portion represents the sum of two contracts to steam-electric WUGs in the San JacintoBrazos River Basin. These contracts have been adjusted according to the procedures outlined above to limit GCWA contracts to available supplies.

HARRIS COUNTY

Harris County steam-electric supplies are allocated below:

Provider	$\mathbf{2 0 1 0}$ ac-ft/yr	$\mathbf{2 0 2 0}$ ac-ft/yr	$\mathbf{2 0 3 0}$ ac-ft/yr	$\mathbf{2 0 4 0}$ ac-ft/yr	$\mathbf{2 0 5 0}$ ac-ft/yr	$\mathbf{2 0 6 0}$ ac-ft/yr
COH	14,369	14,369	14,369	14,369	14,369	14,369

The COH supply is provided to two steam-electric WUGS in the San Jacinto River Basin. Water Right 3461105350 (2120 acre-feet per year) from Clear Creek was cancelled by NRG and is not assumed to be available for use in power generation.

MONTGOMERY COUNTY

Montgomery County steam-electric supplies are allocated below:

Provider	$\mathbf{2 0 1 0}$ ac-ft/yr	$\mathbf{2 0 2 0}$ ac-ft/yr	$\mathbf{2 0 3 0}$ ac-ft/yr	$\mathbf{2 0 4 0}$ ac-ft/yr	$\mathbf{2 0 5 0}$ ac-ft/yr	$\mathbf{2 0 6 0}$ ac-ft/yr
SJRA	7,841	7,841	7,841	7,841	7,841	7,841

The SJRA supply from Lake Conroe provides water to Entergy for steam-electric use.

3.4.5 Wholesale Water Providers

The resources available to Water User Groups (WUGs) in Region H through Wholesale Water Providers (WWPs) are listed in Appendix 3I. The Appendix lists the WWPs that supply water directly to WUGs and lists if the water is "self supplied" or contracted from another WWP. In instances where supplies are contracted from another WWP, the supplier is listed in the "Source WWP" column. This list was compiled with the use of the TCEQ Water Rights Database, WAM and GAM results, contract information and clarifications received directly from the WWPs, and the allocation of groundwater resources shown above.

For the sake of this study, water supplies that are contracted by customers from the City of Houston and delivered via the CWA system have been included with the data for COH. Similarly, TRA is listed as the wholesale water provider for supplies provided by the Trinity County Regional Water Supply System, Huntsville Regional Water Supply System, and Livingston Regional Water Supply System as these providers are operated by TRA.

The groundwater supplies shown in Table 3-14 represent the groundwater supplied to a WUG by the WWP and not groundwater used by a WUG from its own wells. These amounts of groundwater are generally the available supply as determined by the groundwater allocation method described above. However, COH was known to provide specified amounts of groundwater to its contract customers. Therefore, for the COH WWP, the available supply of groundwater is equal to the groundwater supplied to the Houston WUG plus the sum of groundwater contracts to customers. The groundwater available to NCWA is equal to the sum of groundwater allocated to its customers as it was assumed that NCWA is the only source of water for these customers. Fort Bend County WCID \#2 was assumed to provide groundwater to the city of Meadows. Galveston County WCID 1 was allocated the groundwater associated with Dickinson as part of its available supply. The Woodlands is provided water by SJRA, and the groundwater that was available to The Woodlands was assumed to originate from SJRA. Finally, CHCRWA, NFBWA, NHCRWA, the City of Galveston, City of Pasadena, WHCRWA, Sugarland, Missouri City, Richmond-Rosenberg and the City of Huntsville were allocated the groundwater associated with each of the WUGs by the same name.

The volume of WWP supplies available to individual WUGs was determined through contract information from the WWPs, previous records, and further clarification from both the providers and customers. Where it was not possible to determine specific contract amounts to each WUG, other methods were used to approximate the supply to each WUG as described above in the groundwater and surface water allocation sections.

The 2060 supplies available to each WWP are shown below in Table 3-14. Wholesale Water Providers that receive water from another WWP through contractual transfer are listed below the original provider.

The surface water supplies are summarized by county, basin and category of use in Table 3-15. Similarly, Tables 3-16 and Table 3-17 summarize the groundwater and reuse supplies, respectively. An updated shortage analysis will be included in Chapter 4 based on projected demands described in Chapter 2. During the development of the 2011 Region H Water Plan it was noted that several counties in Region H had experienced significant population growth indicating that current and future demands may be higher than previously projected. As a result, shortages in later decades may become greater than projected. If that occurs additional shortages may be met with alternative strategies described later in Chapter 4. The current surface water supplies are summarized by category of water use by basin by WWP in Appendix 3 J .

Table 3-14
Summary of Supplies Available to Region H Wholesale Water Providers in 2060

Wholesale Water Provider*	Available Supplies (acre-feet)		
	Contracts**	Groundwater	Surface Water Rights
Brazos River Authority ${ }^{1}$			155,031
Dow Chemical Company	16,000		137,475
Gulf Coast Water Authority ${ }^{2}$	44,980		214,260
City of Galveston	25,406	1,539	
Fort Bend County WCID \#2	6,579	796	
Galveston County WCID 1^{3}	3,232	309	
Missouri City	9,645	9,340	
NRG ${ }^{4}$	83,000		94,220
Sugarland	12,563	9,027	
Richmond-Rosenburg	7,500	4,279	
Brazosport Water Authority			16,492
Chambers-Liberty Counties Navigation District ${ }^{5}$			76,520
Fort Bend County WCID 1			5,634
City of Houston ${ }^{6}$		83,818	1,254,628
Baytown Area Water Authority	17,534		
Central Harris County Regional Water Authority ${ }^{7}$	2,375	1,287	
Clear Lake City Water Authority ${ }^{8}$	26,876		
La Porte Area Water Authority	9,750		
North Channel Water Authority ${ }^{9}$	6,682	1,645	
North Fort Bend Water Authority ${ }^{10}$	21,434	26,643	
North Harris County Regional Water Authority ${ }^{11}$	34,714	30,558	
City of Pasadena ${ }^{12}$	38,514	2,047	
West Harris County Regional Water Authority ${ }^{13}$	20,437	16,521	
Lower Neches Valley Authority ${ }^{14}$			64,177
San Jacinto River Authority ${ }^{15}$		7,359	232,744
Trinity River Authority			403,200
City of Huntsville	22,403	5,164	

*WWPs that provide water through contract to other WWPs are shown with the customer WWPs listed below the sellers.
**Water received under contract from another WWP.
${ }^{1}$ Available supplies represent contractual agreements to Region H customers only. Supply quantities are for the amount of water currently contracted to Region H customers by BRA.
${ }^{2}$ GCWA contracts with its customers exceed available firm yield supplies. For the purpose of the shortage analysis, contracts were adjusted not to exceed supplies.
${ }^{3}$ Supplies include GCWA contract and maximum amount of groundwater allowed for Dickinson per HGSD regulations.
${ }^{4}$ Supplies include contractual demands to Richmond Irrigation and Brazos Valley Energy, as well as the entire portion of the GCWA contract, which is assumed to be used by NRG. Actual demands may be greater but are overall split among supply sources since actual data is unavailable.
${ }^{5}$ CLCND supply includes rights from Lake Anahuac, less 30,000 acre-feet sold to SJRA.
${ }^{6}$ Groundwater supply includes the portion of groundwater provided to Houston after prorating available, restricted supplies to WUGs, plus groundwater contracted to other WWPs. Demands include contracts to BAWA, CLCWA, LPAWA, Lyondell-Citgo, NCWA, NHCRWA, Pasadena, and WHCRWA WWPs. Surface water rights for COH include 33,000 acre-feet purchased from the Dayton Canal Irrigation Company; it is allocated entirely to irrigation demands in Liberty County.
${ }^{7}$ Available Groundwater Supplies are supplied by the CHCRWA, not contracted from the City of Houston.
${ }^{8}$ Assumes all water remaining after contracts is provided to Clear Lake (Houston WUG).
${ }^{9}$ NCWA groundwater supply estimated from the 2003-2004 ratio of groundwater to contract water. Demands were assumed to equal supplies.
${ }^{10}$ Available Groundwater Supplies are supplied by the NFBWA, not contracted from the City of Houston.
${ }^{11}$ Available Groundwater Supplies are supplied by the NHCRWA, not contracted from the City of Houston.
${ }^{12}$ Includes total Pasadena demands, less the portion met by CLCWA.
${ }^{13}$ Available Groundwater Supplies are supplied by the WHCRWA, not contracted from the City of Houston.
${ }^{14}$ Supplies represent contractual agreements to Region H customers only. Supply quantities are for the entire Rayburn-Steinhagen system and do not represent the portion available to Region H .
${ }^{15}$ Includes water demands and available groundwater supplied to The Woodlands. The 2060 groundwater supply shown above is the least amount of groundwater available throughout the planning periods. Also includes 14,944 acre-feet of permitted indirect reuse.

Table 3-15
Surface Water Supply by Categories of Water Use in Each County and Basin

County	Basin	Use	Available Supplies (acre-feet per year)					
			$\begin{aligned} & \text { Year } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2020 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2030 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2040 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2050 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2060 \end{aligned}$
AUSTIN	COLORADO	LIVESTOCK	52	56	58	59	60	61
BRAZORIA	BRAZOS	IRRIGATION	1,850	1,850	1,850	1,850	1,850	1,850
		LIVESTOCK	220	228	232	235	236	238
		MANUFACTURING	153,763	153,763	153,763	153,762	153,742	153,762
		MINING	190	190	190	190	190	190
		MUNICIPAL	223	199	183	172	162	154
	BRAZOSCOLORADO	LIVESTOCK	200	202	206	210	217	225
		MANUFACTURING	11,354	11,422	11,422	11,422	11,422	11,422
		MINING	1,124	1,124	1,124	1,124	1,124	1,124
		MUNICIPAL	478	478	478	478	478	478
	SAN JACINTOBRAZOS	IRRIGATION	25,131	25,131	25,131	25,131	25,131	25,131
		LIVESTOCK	545	505	547	591	643	690
		MANUFACTURING	45,260	45,260	45,260	45,261	45,281	45,261
		MINING	305	305	305	305	305	305
		MUNICIPAL	23,155	23,223	23,259	23,280	23,302	23,320
CHAMBERS	NECHESTRINITY	IRRIGATION	116,568	116,302	116,120	115,920	115,691	115,419
		LIVESTOCK	317	317	317	317	317	318
		MINING	505	505	505	505	505	505
		MUNICIPAL	3,806	3,863	3,931	4,007	4,092	4,191
	TRINITY	LIVESTOCK	50	50	50	50	51	51
		MINING	18,989	18,989	18,989	18,989	18,989	18,989
		MUNICIPAL	1,595	1,623	1,653	1,688	1,729	1,774
	TRINITY-SAN JACINTO	IRRIGATION	2,185	2,185	2,185	2,185	2,185	2,185
		LIVESTOCK	48	49	51	52	53	54
		MINING	4,722	4,722	4,722	4,672	4,601	4,502
		MUNICIPAL	821	891	950	996	1,040	1,084
		STEAM ELECTRIC POWER	30,000	30,000	30,000	30,000	30,000	30,000
FORT BEND	BRAZOS	IRRIGATION	12,000	12,000	12,000	12,000	12,000	12,000
		LIVESTOCK	0	207	415	415	415	415
		MANUFACTURING	400	400	400	400	400	400
		MUNICIPAL	15,242	16,028	16,131	16,259	16,515	16,822
		STEAM ELECTRIC POWER	111,711	111,711	111,711	111,711	111,711	111,711
	SAN JACINTO	LIVESTOCK	13	30	47	47	47	47
		MINING	8	8	8	8	8	8
		MUNICIPAL	8,529	18,494	18,408	18,680	19,121	19,261
	SAN JACINTOBRAZOS	IRRIGATION	2,143	2,143	2,143	2,143	2,143	2,143
		LIVESTOCK	64	98	139	139	139	139
		MANUFACTURING	1,000	1,000	1,000	1,000	1,000	1,000
		MINING	517	517	517	517	517	517
		MUNICIPAL	19,478	31,008	33,159	34,283	35,559	36,584
GALVESTON	NECHESTRINITY	MINING	106	106	106	106	106	106
		MUNICIPAL	5,550	5,500	5,450	5,400	5,350	5,300

Chapter 3 - Analysis of Current
Water Supplies
August 2010

County	Basin	Use	Available Supplies (acre-feet per year)					
			$\begin{aligned} & \text { Year } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2020 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2030 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2040 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2050 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2060 \end{aligned}$
	SAN JACINTOBRAZOS	IRRIGATION	142	142	142	142	142	142
		LIVESTOCK	306	296	280	280	280	281
		MANUFACTURING	68,414	68,414	68,414	68,414	68,414	68,414
		MINING	101	101	101	101	101	101
		MUNICIPAL	77,993	78,258	78,403	78,465	78,509	78,538
		STEAM ELECTRIC POWER	2,231	2,231	2,231	2,231	2,231	2,231
HARRIS	SAN JACINTO	IRRIGATION	1,476	1,476	1,476	1,476	1,476	1,476
		LIVESTOCK	324	666	803	803	803	803
		MANUFACTURING	364,933	364,933	364,961	364,970	364,975	364,973
		MINING	992	992	992	992	992	992
		MUNICIPAL	404,719	435,032	464,366	499,737	537,217	543,310
		STEAM ELECTRIC POWER	14,369	14,369	14,369	14,369	14,369	14,369
	SAN JACINTOBRAZOS	LIVESTOCK	82	82	82	82	82	82
		MANUFACTURING	55,739	55,739	55,711	55,702	55,697	55,699
		MINING	19	19	19	19	19	19
		MUNICIPAL	58,484	60,167	61,852	63,786	65,854	66,182
	TRINITY-SAN JACINTO	IRRIGATION	1,355	1,355	1,355	1,355	1,355	1,355
		LIVESTOCK	73	73	73	73	73	73
		MANUFACTURING	42,345	42,345	42,345	42,345	42,345	42,345
		MUNICIPAL	17,100	17,033	16,978	16,934	16,892	16,851
LIBERTY	NECHES	IRRIGATION	2,500	2,500	2,500	2,500	2,500	2,500
		LIVESTOCK	45	45	45	45	45	70
	NECHESTRINITY	IRRIGATION	19,269	19,228	19,199	19,170	19,134	19,093
	TRINITY	IRRIGATION	44,113	44,420	44,631	44,860	45,125	45,438
		MUNICIPAL	72	71	72	73	77	80
	TRINITY-SAN JACINTO	IRRIGATION	685	685	685	685	685	685
		LIVESTOCK	0	0	0	0	0	17
MONTGOME RY	SAN JACINTO	IRRIGATION	880	880	880	880	880	880
		LIVESTOCK	510	510	510	510	510	510
		STEAM ELECTRIC POWER	7,841	7,841	7,841	7,841	7,841	7,841
POLK	TRINITY	MUNICIPAL	6,236	6,225	6,221	6,221	6,230	6,237
SAN JACINTO	SAN JACINTO	MUNICIPAL	63	70	73	75	75	74
	TRINITY	IRRIGATION	135	135	135	135	135	135
		MUNICIPAL	977	990	1,004	1,013	1,012	1,008
TRINITY	TRINITY	IRRIGATION	290	290	290	290	290	290
		LIVESTOCK	211	211	211	211	211	211
		MUNICIPAL	5,615	5,598	5,590	5,587	5,577	5,573
WALKER	SAN JACINTO	LIVESTOCK	0	1	12	8	9	11
		MUNICIPAL	17,606	17,211	17,244	17,291	17,367	17,454
	TRINITY	LIVESTOCK	106	127	138	143	148	154
		MUNICIPAL	4,925	5,322	5,283	5,230	5,157	5,073
WALLER	BRAZOS	LIVESTOCK	232	232	232	232	242	277
	SAN JACINTO	LIVESTOCK	90	90	90	90	102	107
Total			1,843,815	1,899,087	1,932,954	1,971,925	2,013,605	2,021,690

Table 3-16

Groundwater Supply by Categories of Water Use in Each County and Basin

County	Basin	Use	Available Supplies (acre-feet per year)					
			$\begin{aligned} & \text { Year } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2020 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2030 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2040 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2050 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2060 \end{aligned}$
AUSTIN	BRAZOS	IRRIGATION	743	743	743	743	743	743
		LIVESTOCK	1,211	1,211	1,211	1,211	1,211	1,211
		MANUFACTURING	172	172	172	172	172	172
		MINING	40	40	40	40	40	40
		MUNICIPAL	3,638	3,462	3,353	3,283	3,250	3,215
	$\begin{aligned} & \text { BRAZOS- } \\ & \text { COLORADO } \end{aligned}$	IRRIGATION	9,874	9,874	9,874	9,874	9,874	9,874
		LIVESTOCK	339	339	339	339	339	339
		MANUFACTURING	38	38	38	38	38	38
		MINING	4	4	4	4	4	4
		MUNICIPAL	459	459	459	459	459	459
	COLORADO	LIVESTOCK	13	9	7	6	5	4
		MINING	7	7	7	7	7	7
		MUNICIPAL	26	26	26	26	26	26
BRAZORIA	BRAZOS	LIVESTOCK	22	14	10	7	6	4
		MANUFACTURING	24,125	4,493	4,026	3,597	3,116	2,600
		MINING	117	28	28	28	28	28
		MUNICIPAL	2,257	2,122	2,097	2,075	2,056	2,045
	BRAZOS-COLORADO	IRRIGATION	4,765	4,277	4,089	3,976	3,976	3,976
		LIVESTOCK	204	202	198	194	187	179
		MINING	1,728	1,440	1,440	1,440	1,440	1,440
		MUNICIPAL	2,869	2,858	2,847	2,834	2,827	2,825
	SAN JACINTOBRAZOS	LIVESTOCK	423	423	421	377	325	278
		MINING	640	624	624	624	624	624
		MUNICIPAL	13,250	13,113	13,082	13,058	13,051	13,053
CHAMBERS	NECHESTRINITY	IRRIGATION	3,890	3,884	3,880	3,879	3,876	3,876
		LIVESTOCK	16	16	16	16	16	15
		MINING	30	30	30	30	30	30
		MUNICIPAL	47	45	43	42	41	40
	TRINITY	IRRIGATION	5,688	5,464	5,330	5,207	5,089	4,988
		LIVESTOCK	10	10	10	10	9	9
		MINING	4,907	4,907	4,907	4,907	4,907	4,907
		MUNICIPAL	201	197	195	193	191	190
	TRINITY-SAN JACINTO	IRRIGATION	530	509	472	439	409	379
		LIVESTOCK	21	20	18	17	16	15
		MANUFACTURING	3,538	3,538	3,538	3,538	3,538	3,538
		MINING	2,561	2,561	2,561	2,511	2,440	2,341
		MUNICIPAL	282	278	273	268	265	262
		STEAM ELECTRIC POWER	1,330	1,018	1,104	1,208	1,332	1,468

FORT BEND	BRAZOS	IRRIGATION	5,907	5,907	5,907	5,907	5,907	5,907
		LIVESTOCK	691	484	276	276	276	276
		MANUFACTURING	1,235	907	538	538	538	538
		MINING	618	441	255	255	255	255
		MUNICIPAL	30,481	23,372	16,990	16,966	16,966	16,966
		STEAM ELECTRIC POWER	11,316	11,316	11,316	11,316	11,316	11,316
	bRAZOSCOLORADO	IRRIGATION	18,869	18,869	18,869	18,869	18,869	18,869
		LIVESTOCK	211	211	211	211	211	211
		MINING	140	140	140	140	140	140
		MUNICIPAL	706	552	662	720	798	819
	SAN JACINTO	IRRIGATION	7,538	7,538	7,538	7,538	7,538	7,538
		LIVESTOCK	57	40	23	23	23	23
		MANUFACTURING	1,979	1,453	862	862	862	855
		MINING	272	200	116	116	116	116
		MUNICIPAL	28,134	25,090	16,923	16,913	16,910	16,910
	SAN JACINTOBRAZOS	IRRIGATION	6,998	6,998	6,998	6,998	6,998	6,998
		LIVESTOCK	135	101	60	60	60	60
		MANUFACTURING	3,649	2,679	1,588	1,588	1,588	1,588
		MINING	1,455	1,408	814	822	830	838
		MUNICIPAL	46,394	41,389	31,085	31,051	31,049	30,149
GALVESTON	NECHESTRINITY	LIVESTOCK	2	2	2	2	2	2
		MINING	14	14	14	14	14	14
	SAN JACINTOBRAZOS	IRRIGATION	1,020	1,020	1,020	1,020	1,020	1,020
		LIVESTOCK	3	3	3	3	3	3
		MANUFACTURING	4,101	4,101	4,101	4,101	4,101	4,101
		MINING	13	13	13	13	13	13
		MUNICIPAL	4,444	4,395	4,349	4,303	4,273	4,275
HARRIS	SAN JACINTO	IRRIGATION	9,883	9,883	9,883	9,883	9,883	9,883
		LIVESTOCK	666	285	190	190	190	190
		MANUFACTURING	51,293	51,293	51,293	51,293	51,293	51,293
		MINING	126	126	126	126	126	126
		MUNICIPAL	253,507	168,337	147,713	147,659	147,639	147,647
	SAN JACINTOBRAZOS	LIVESTOCK	9	9	9	9	9	9
		MANUFACTURING	6,692	6,692	6,692	6,692	6,692	6,692
		MINING	2	2	2	2	2	2
		MUNICIPAL	6,002	5,279	5,222	5,124	5,111	5,120
		STEAM ELECTRIC POWER	44	44	44	44	44	44
	TRINITY-SAN JACINTO	IRRIGATION	5,417	5,417	5,417	5,417	5,417	5,417
		LIVESTOCK	18	18	18	18	18	18
		MANUFACTURING	7,261	7,261	7,261	7,261	7,261	7,261
		MUNICIPAL	1,528	1,408	1,452	1,452	1,452	1,452
LEON	BRAZOS	LIVESTOCK	423	423	423	423	423	423
		MINING	221	213	209	205	201	198
		MUNICIPAL	488	488	488	488	488	488
	TRINITY	IRRIGATION	542	542	542	542	542	542

		LIVESTOCK	1,268	1,268	1,268	1,268	1,268	1,268
		MANUFACTURING	714	714	714	714	714	714
		MINING	1,296	1,251	1,226	1,204	1,183	1,166
		MUNICIPAL	1,640	1,640	1,640	1,640	1,640	1,640
LIBERTY	NECHES	IRRIGATION	12	12	12	12	12	12
		LIVESTOCK	59	59	59	59	59	34
		MINING	32	32	32	32	32	32
		MUNICIPAL	241	241	241	241	241	241
	NECHESTRINITY	IRRIGATION	375	374	372	369	368	367
		LIVESTOCK	35	35	35	35	35	35
		MINING	23	23	23	23	23	22
		MUNICIPAL	11	11	11	11	11	11
	SAN JACINTO	IRRIGATION	830	830	830	830	830	830
		LIVESTOCK	140	140	140	140	140	140
		MANUFACTURING	331	331	331	331	331	331
		MINING	34	34	34	34	34	34
		MUNICIPAL	2,865	2,865	2,865	2,865	2,865	2,865
	TRINITY	IRRIGATION	10,367	8,078	6,416	4,597	2,447	0
		LIVESTOCK	446	446	446	446	446	446
		MANUFACTURING	62	62	62	62	62	62
		MINING	4,924	4,880	4,836	4,794	4,747	4,695
		MUNICIPAL	7,166	7,166	7,166	7,166	7,166	7,166
		STEAM ELECTRIC POWER	2,962	2,962	2,962	2,962	2,962	2,962
	TRINITY-SAN JACINTO	IRRIGATION	5,683	5,643	5,608	5,573	5,535	5,507
		LIVESTOCK	32	32	32	32	32	15
		MINING	3,717	3,717	3,717	3,717	3,717	3,717
		MUNICIPAL	187	187	187	187	187	187
MADISON	BRAZOS	LIVESTOCK	120	120	120	120	120	120
		MINING	9	9	9	9	9	9
		MUNICIPAL	106	106	106	106	106	106
	TRINITY	IRRIGATION	19	19	19	19	19	19
		LIVESTOCK	630	630	630	630	630	630
		MANUFACTURING	260	260	260	260	260	260
		MINING	15	15	15	15	15	15
		MUNICIPAL	1,687	1,660	1,643	1,692	1,688	1,657
MONTGOMERY	SAN JACINTO	IRRIGATION	51	38	31	26	21	18
		LIVESTOCK	393	293	239	199	161	132
		MANUFACTURING	1,576	1,344	1,224	1,127	997	888
		MINING	370	293	247	212	177	148
		MUNICIPAL	57,722	52,532	53,909	52,949	49,746	47,142
		STEAM ELECTRIC POWER	3,888	3,885	3,879	3,873	3,864	3,852
POLK	TRINITY	LIVESTOCK	134	134	134	134	134	134
		MINING	29	29	29	29	29	29
		MUNICIPAL	2,919	2,919	2,919	2,919	2,919	2,919
SAN JACINTO	SAN JACINTO	LIVESTOCK	142	142	142	142	142	142

		MANUFACTURING	48	48	48	48	48	48
		MINING	23	23	22	21	20	20
		MUNICIPAL	1,345	1,345	1,345	1,345	1,345	1,345
		IRRIGATION	532	532	532	532	532	532
		LIVESTOCK	142	142	142	142	142	142
	TRINITY	MINING	7	6	6	6	6	6
		MUNICIPAL	2,650	2,650	2,650	2,650	2,650	2,551
		IRRIGATION	467	467	467	467	467	467
TRINITY	TRINITY	MINING	6	6	6	6	6	6
		MUNICIPAL	805	805	800	782	762	734
		IRRIGATION	5	5	5	5	5	5
		LIVESTOCK	310	309	298	302	301	299
	SAN JACINTO	MANUFACTURING	577	577	577	577	577	577
		MINING	7	7	7	7	7	7
		MUNICIPAL	8,546	6,422	6,714	6,444	6,548	6,602
WALKER		IRRIGATION	6	6	6	6	6	6
		LIVESTOCK	216	195	184	179	174	168
	TRINITY	MANUFACTURING	2,631	2,422	2,111	2,312	2,352	2,369
		MINING	6	6	6	6	6	6
		MUNICIPAL	4,080	4,254	4,359	3,739	3,434	3,049
		IRRIGATION	4,825	4,825	4,825	4,825	4,825	4,825
		LIVESTOCK	444	444	444	444	434	399
	BRAZOS	MANUFACTURING	17	17	17	17	17	17
		MINING	9	9	9	9	9	9
		MUNICIPAL	4,061	4,061	4,061	4,061	4,061	4,061
WALLER		IRRIGATION	18,153	17,679	18,153	18,140	16,561	14,755
		LIVESTOCK	173	173	173	173	161	156
	SAN JACINTO	MANUFACTURING	72	72	72	72	72	72
		MINING	71	71	71	71	71	71
		MUNICIPAL	1,570	1,502	1,491	1,491	1,491	1,491
	Total		777,845	641,359	591,590	586,814	578,644	569,361

Table 3-17
Reuse Supply by Categories of Water Use in Each County and Basin

County	Basin	Use	Available Supplies (acre-feet per year)					
			$\begin{aligned} & \text { Year } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2020 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2030 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2040 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2050 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2060 \end{aligned}$
MONTGOMERY	SAN JACINTO	MUNICIPAL	0	0	438	14,799	14,840	14,866
Total			0	0	438	14,799	14,840	14,866

Appendix 3A

Current Water Supply Sources Available During Drought of Record Conditions

This Page Intentionally Left Blank

Table 3A-1: Current Water Supply Sources Available During Drought of Record Conditions

Appendix 3B

WRAP Input Files

This Page Intentionally Left Blank

Appendix 3B

Water Availability Model Input Files

These input files are used with the Water Rights Analysis Package (WRAP) available from the TCEQ or the Texas Water Resources Institute at Texas A\&M University.

Basin	File Name(s)	Notes
Neches-Trinity	NT_wam3.dat .dis .eva .inf	1,2
Trinity	TR_wam3_2000.dat TR_wam3_2060.dat TR_wam3_2010_LIVFY.dat TR_wam3_2020_LIVFY.dat TR_wam3_2030_LIVFY.dat TR_wam3_2040_LIVFY.dat TR_wam3_2050_LIVFY.dat TR_wam3_2060_LIVFY.dat TR_wam3_2000_anaFY.dat TR_wam3_2060_anaFY.dat Trin3.flo dis.eva	3
Trinity-San Jacinto	TRSJ_wam3.dat .dis .eva .inf	1, 2
San Jacinto	SJ_wam3_2000.dat .dis .eva .inf SJ wam3 2060.dat .dis .eva .inf	
San Jacinto-Brazos	SJBR_wam3.dat .dis .eva .inf	
Brazos	2010_bwam3.dat .dis .eva .inf 2060_bwam3.dat .dis .eva .inf	
Brazos-Colorado	CO_wam3.dat .dis .eva .inf	2, 4

1. The original TCEQ WĀM file was used without modification.
2. A 2060 condition model was not required for this basin. There are no on-channel reservoirs in the coastal basin to be affected by sedimentation.
3. Firm yield models for Lake Livingston and Lake Anahuac, using updated areacapacity curves. The Lake Livingston model also includes partial return flows from the upper basin (varied by decade).
4. The Brazos-Colorado basin is included in the Colorado basin WAM

Model files are provided electronically (attached CD). These files may be viewed using a text editor such as Notepad or Wordpad. All four files are required to run the WRAP simulation. The file extensions indicate the type of data included in the file:

Root.dat Basic file containing all input data, except the hydrology related data in the following files.
Root.inf Inflow records with naturalized streamflows
Root.eva Evaporation records with net evaporation-precipitation rates
Root.dis Flow distribution and watershed parameter records for transferring flows from the inflow records to other control points

Additional model runs were conducted for the San Jacinto Basin to determine the firm yield of Lakes Conroe and Houston. In these models, the diversion amount for a given reservoir is adjusted downward until a value is determined that can be reliably diverted in every year of the
simulation. This is an iterative process that balances available run-of-river supply and stored water with monthly diversion targets. These models are included in subfolders in this Appendix.

Appendix 3C

Upper Basin Return Flow and Lake Livingston Firm Yield Analysis

This Page Intentionally Left Blank

Contents

Section 1 - Executive Summary 1-1
1.1 Introduction 1-1
1.2 Purpose of Study 1-1
Section 2 - Projected Return Flows 2-1
2.1 Region C Demands 2-1
2.2 Projected Conservation 2-2
2.3 Recommended Region C Reuse Projects 2-3
2.3.1 Direct Reuse Projects 2-3
2.3.2 Indirect Reuse Projects 2-4
2.4 Projected Return Flows 2-5
2.5 Simulated Return Flows 2-7
Section 3 - Methodology 3-1
3.1 Trinity River WAM Firm Yield Analysis 3-1
3.2 Trinity River WAM Iterative Firm Yield Analysis 3-2
Section 4 - Evaluation of Projected Return Flow on Lake Livingston 4-1
4.1 Lake Livingston Firm Yield 4-1
4.2 Necessary Level of Return Flows 4-2
Section 5 - Findings and Conclusions 5-1
5.1 Summary of Findings 5-1
5.2 Impacts on Recommended Region H Strategies. 5-1

List of Tables

Table 1 Projected Municipal Demands in the Upper Trinity Basin by County
Table 2 Projected Industrial Demands by County
Table 3 Projected Conservation by County
Table 4 Region C Recommended Direct Reuse Projects
Table 5 Region C Recommended Direct Reuse Projects
Table 6 Region C 2006 Projected Upper Trinity Basin Return Flows
Table 7 Region C 2008 Projected Upper Trinity Basin Return Flows
Table 8 DB07 Return Flow Analysis
Table 9 Return Flows at Oakwood Gage
Table 10 Lake Livingston Firm Yield Models
Table 11 Lake Livingston Firm Yield

Table 12 Lake Livingston Firm Yield (acre-ft per year)
Table 13 Lake Livingston Firm Yield vs Projected Demands (acre-ft per year)

List of Figures

Figure 2-1 Minimum Annual Return Flows at Oakwood Gage
Figure 4-1 Lake Livingston Storage
Figure 4-2 Minimum Annual Flows at Oakwood
Figure 5-1 Lake Livingston Firm Yield vs Projected Demands

Appendices

Appendix A	DB07 - Region C Municipal Demands in Trinity Basin
Appendix B	DB07 - Region C Industrial Demands in Trinity Basin
Appendix C	DB07 - Region C Conservation Supply in Trinity Basin
Appendix D	DB07 - Region C Current Reuse Supplies in Trinity Basin
Appendix E	DB07 - Region C WMS Reuse Supplies in Trinity Basin

Section 1- Executive Summary

1.1 Introduction

Return flows have an important impact on the magnitude and reliability of downstream water rights and have been carefully considered by the Region H Water Planning Group in previous regional water plans. Region H is comprised of eight river and coastal basins with several river basins extending though multiple planning regions. The Trinity River Basin is a major source of water supplies for both Region C and Region H. As a result, projected water demands and water management strategies in both regions have the ability to influence water supply availability. Coordination between lower Trinity Basin supplies located in Region H and upper Trinity Basin supplies in Region C is necessary to protect the firm yield of downstream water rights. During the development of both the 2001 and 2006 Region H Water Plans, the importance of upper basin return flows was recognized.

During the 2006 Region H Regional Water Plan, the firm yield of the Lake Livingston water rights was evaluated assuming that a minimum level of return flows would be available from the upper Trinity Basin throughout the planning period. The 2006 Region H Regional Water Plan took into account future conditions in the Trinity Basin by analyzing the 2060 projected return flows and proposed water management strategies. However, an analysis confirming the minimum level of return flows necessary to make the Lake Livingston water rights firm was not performed. Additionally, a decadal analysis was not performed to verify that the level of return flows projected from the upper Trinity Basin would be sufficient to firm up the Lake Livingston water rights. The analysis concluded that the permitted yield of Lake Livingston would be available throughout the planning period.

1.2 Purpose of Study

As part of the 2011 Region H Regional Water Plan, specific scope items were included to review and evaluate the 2006 Region C Regional Water Plan. The study focused on determining the level of Upper Trinity Basin return flows projected in each planning decade as a result of increased demands and levels of reuse. The Water Rights Analysis Package (WRAP) was utilized to perform the following tasks:

- Evaluate return flows available to Region H at the Oakwood Gage (gage located between Region C and Region H).
- Determine if projected return flows would be sufficient to maintain the firm yield of the Lake Livingston water rights for each planning decade.
- Identify the minimum level of return flows necessary to maintain the firm yield.
- Perform a decadal firm yield analysis on Lake Livingston water rights.

This Page Intentionally Left Blank

Section 2 - Projected Return Flows

Lake Livingston is dependent upon return flows from upstream Region C in the upper Trinity Basin. As a result of its downstream location, Lake Livingston indirectly benefits from growth in the DallasFort Worth Metroplex. As upstream demands increase in Region C, it is anticipated that the importation of out-of-basin supplies will increase, providing additional return flows to the lower basin. Although return flows will likely increase over time, the timing of developing reuse supplies may have an adverse effect on the Lake Livingston water rights, temporarily reducing the in-basin return flows. To calculate the projected level of return flows in the upper Trinity Basin, a desktop analysis of Region C WUG demands and reuse strategies was performed and compared to previous estimates performed by the Region C Consultant.

The analysis was performed in the following order:

- Region C WUG Demands in the Trinity Basin were obtained from the TWDB DB07 database.
- Region C conservation strategies for WUGs in the Trinity Basin were totaled from the TWDB DB07 database.
- Net demands were calculated by subtracting conservation strategy volumes from WUG demands.
- Total return flows were calculated by assuming return flow factors (RFs) from the 2008 Region C draft Conservation and Reuse Study (December, 2008).
- Existing and proposed reuse strategies were summarized from information in the 2006 Region C Regional Water Plan, Chapter 3.
- The net instream return flows in Region C were estimated by subtracting proposed reuse volumes from total return flows.

2.1 Region C Demands

Region C demands from the 2006 Region C Regional Water Plan were summarized using data obtained from the TWDB DB07 online database. Table 1 lists the municipal demands in the upper Trinity Basin by county and decades. Demands in the upper Trinity Basin are projected to increase to approximately $3,000,000$ million acre-feet/year by 2060. The largest demand centers are Dallas, Collin, Denton and Tarrant Counties which encompass the Dallas-Fort Worth Metroplex. A full list of the WUGs and projected water demand summarized in the table below is provided in Appendix A.

Table 1 Projected Municipal Demands in the Upper Trinity Basin by County
Values in Acre-feet per Year

County	2010	2020	2030	2040	2050	2060
Collin	205,085	283,825	338,957	403,157	463,042	528,034
Cooke	6,806	7,711	8,658	9,459	10,641	11,669
Dallas	664,648	744,647	798,544	849,619	926,206	$1,032,662$
Denton	160,915	215,320	270,575	318,575	367,531	423,718
Ellis	27,766	35,225	43,561	52,850	63,927	77,145
Fannin	717	876	1,226	1,822	2,594	3,293

County	2010	2020	2030	2040	2050	2060
Freestone	2,831	3,127	3,321	3,498	3,663	3,828
Grayson	4,643	7,463	9,413	10,703	11,916	13,032
Henderson	10,316	12,495	14,645	16,862	19,553	22,888
Jack	1,089	1,177	1,256	1,321	1,385	1,449
Kaufman	17,835	25,020	30,198	34,950	40,226	46,845
Navarro	9,637	10,748	11,730	12,817	14,109	15,712
Parker	15,697	27,903	37,011	41,868	47,113	51,875
Rockwell	15,720	24,933	30,700	34,588	36,757	38,445
Tarrant	376,889	434,790	488,467	550,239	626,628	713,176
Wise	10,801	15,310	18,991	22,501	26,814	31,494
Total	$1,531,395$	$1,850,570$	$2,107,253$	$2,364,829$	$2,662,105$	$3,015,265$

The industrial demands in the Upper Trinity Basin are listed in Table 2 by County and decade and are projected to increase to nearly 100,000 acre-feet/year by 2060. The largest demand centers are Dallas and Tarrant Counties part of the Dallas-Fort Worth Metroplex. A full list of the WUGs and projected water demand summarized in the table below is provided in Appendix B.

Table 2 Projected Industrial Demands by County
Values in Acre-feet per Year

County	2010	2020	2030	2040	2050	2060
Collin	3,607	4,137	4,654	5,170	5,633	6,115
Cooke	273	306	335	364	389	421
Dallas	34,115	37,791	41,148	44,214	46,703	46,983
Denton	1,068	1,239	1,408	1,579	1,731	1,880
Ellis	3,466	3,670	3,841	3,987	4,089	3,912
Fannin	0	0	0	0	0	0
Freestone	0	0	0	0	0	0
Grayson	2	2	2	2	2	2
Henderson	110	118	133	151	172	195
Jack	0	0	0	0	0	0
Kaufman	760	813	869	928	993	1,061
Navarro	1,172	1,328	1,468	1,607	1,730	1,872
Parker	548	618	685	751	809	878
Rockwell	12	14	16	17	19	21
Tarrant	17,258	20,444	23,630	26,924	29,919	32,457
Wise	2,313	2,660	2,979	3,277	3,539	3,858
Total	64,704	73,140	81,168	88,971	95,728	99,655

2.2 Projected Conservation

Projected Conservation supplies are listed below in Table 3 by County. A full list of the WUGs and projected water demand summarized in the table below is provided in Appendix C.

Table 3 Projected Conservation by County
Values in Acre-feet per Year

County	2010	2020	2030	2040	2050	2060
Collin	3,607	4,137	4,654	5,170	5,633	6,115
Cooke	273	306	335	364	389	421
Dallas	34,115	37,791	41,148	44,214	46,703	46,983
Denton	1,068	1,239	1,408	1,579	1,731	1,880
Ellis	3,466	3,670	3,841	3,987	4,089	3,912
Fannin	0	0	0	0	0	0
Freestone	0	0	0	0	0	0
Grayson	2	2	2	2	2	2
Henderson	110	118	133	151	172	195
Jack	0	0	0	0	0	0
Kaufman	760	813	869	928	993	1,061
Navarro	1,172	1,328	1,468	1,607	1,730	1,872
Parker	548	618	685	751	809	878
Rockwell	12	14	16	17	19	21
Tarrant	17,258	20,444	23,630	26,924	29,919	32,457
Wise	2,313	2,660	2,979	3,277	3,539	3,858
Total	64,704	73,140	81,168	88,971	95,728	99,655

2.3 Recommended Region C Reuse Projects

Currently, direct and indirect reuse projects account for nearly 100,000 acre-feet/year of existing supply in Region C. According to 2006 Region C Water Plan, the proposed future adoption of reuse is anticipated to provide approximately 771,000 acre-feet per year of water to meet demand in Region C by 2060. The total amount of reuse recommended in the plan is approximately 795,500 acre-ft per year. Two types of reuse projects are recommended in the 2006 Region C Water Plan, direct and indirect reuse.

2.3.1 Direct Reuse Projects

The majority of the existing reuse projects identified in the 2006 Region C Water Plan are direct reuse projects. Direct reuse projects typically supply water for landscape irrigation (golf courses) and industrial uses (cooling water for electric power plants) by delivering treated wastewater effluent directly from a wastewater treatment facility. Direct reuse projects require notification of the Texas Commission on Environmental Quality (TCEQ) and must comply with direct reuse regulations in Title 30, Chapter 210 of the Texas Administrative Code. Recommended direct reuse projects included in the 2006 Region C Water Plan are listed below.

Table 4 Region C Recommended Direct Reuse Projects
Values in Acre-feet per Year

Reuse Project	2010	2020	2030	2040	2050	2060
NTMWD East Fork Reuse	81,400	96,400	102,000	102,000	102,000	102,000
TRA Tarrant County Reuse (Tarrant County-Other)	0	7,500	7,500	7,500	7,500	7,500

Reuse Project	2010	2020	2030	2040	2050	2060
TRA Mountain Creek Direct Reuse SEP (Dallas County)	0	3,000	3,000	3,000	3,000	3,000
TRA Ellis County Direct Reuse SEP	20,000	20,000	30,000	30,000	40,000	40,000
TRA Direct Reuse for County Irrigation	3,750	3,750	3,750	3,750	3,750	3,750
TRA Direct Reuse for Denton County Irrigation	3,750	3,750	3,750	3,750	3,750	3,750
TRA Freestone County Direct Reuse SEP	0	0	10,000	10,000	20,000	20,000
TRA Kaufman County Direct Reuse SEP	0	7,500	15,000	15,000	15,000	15,000
Fort Worth Direct Reuse from Village Creek WWTP	500	500	1,100	2,000	2,600	2,600
Fort Worth Direct Reuse Mary's Creek	0	1,240	1,570	1,570	1,570	1,570
Fort Worth Direct Reuse Central Business District	0	2,240	3,360	3,360	3,360	3,360
Fort Worth Direct Reuse - Alliance Corridor	0	1,120	2,240	3,360	3,360	3,360
Bridgeport Direct Reuse	0	0	0	1,500	2,000	2,000
Decatur Direct Reuse	0	0	0	2,000	2,000	2,000
Local Mining Reuse	14,337	14,133	22,428	19,652	24,648	28,520
Total	$\mathbf{1 2 3 , 7 3 7}$	$\mathbf{1 6 1 , 1 3 3}$	$\mathbf{2 0 5 , 6 9 8}$	$\mathbf{2 0 8 , 4 4 2}$	$\mathbf{2 3 4 , 5 3 8}$	$\mathbf{2 3 8 , 4 1 0}$

2.3.2 Indirect Reuse Projects

Indirect reuse involves the discharge of treated wastewater into a stream or reservoir and subsequent diversion for reuse. The process allows the treated wastewater effluent to "blend" with the "natural" waters of the stream or reservoir prior to being diverted for use. In Region H many sources rely on the return flows from treated wastewater effluent as well as naturally occurring runoff. Recommended indirect reuse projects included in the 2006 Region C Water Plan are listed below.

Table 5 Region C Recommended Indirect Reuse Projects
Values in Acre-feet per Year

Reuse Project	2010	2020	2030	2040	2050	2060
NTMWD Additional Wilson Creek Indirect Reuse	26,956	35,941	35,941	35,941	35,941	35,941
DWU Direct Reuse	20,456	20,456	20,456	20,456	20,456	20,456
DWU Southside Indirect Reuse	0	67,253	67,253	67,253	67,253	67,253
DWU Lewisville Indirect Reuse	0	0	67,253	67,253	67,253	67,253
DWU and UTRWD Indirect Reuse of Return Flows above Dallas Lakes	34,366	44,746	53,141	60,640	69,854	79,605
TRWD Trinity River Reuse (Richland-Chambers)	63,000	63,000	63,000	63,000	63,000	63,000
TRWD Trinity River Reuse (Cedar Creek)	0	52,500	52,500	52,500	52,500	52,500
TRWD Additional Yield from Richland-Chambers due to reuse	21,556	28,612	35,668	37,465	37,465	37,465

Reuse Project	2010	2020	2030	2040	2050	2060
project						
TRWD Additional Yield from Cedar Creek due to reuse project	0	24,934	27,651	30,368	33,085	35,800
TRA Joe Pool Lake Indirect Reuse	0	20,000	20,000	20,000	20,000	20,000
TRA Joe Pool Lake Indirect Reuse	0	3,500	3,500	3,500	3,500	3,500
UTRWD Indirect Reuse of Chapman Lake	8,441	8,301	8,161	8,021	7,882	7,743
Athens Indirect Reuse	1,662	1,966	2,325	2,677	2,677	2,677
Ennis Indirect Reuse	0	0	74	1,037	2,269	3,696
TRA Additional Las Colinas Indirect Reuse		7,000	7,000	7,000	7,000	7,000
Gainesville Indirect	0	561	561	561	561	561
TRA Contract With Irving	28,000	28,000	28,000	28,000	28,000	28,000
Waxahachie Additional Reuse	3,112	2,963	2,684	2,405	2,125	1,846
UTRWD Indirect Reuse of flows from Lake Ralph Hall	17,760	17,760	17,760	17,760	17,760	
Weatherford Indirect Reuse		5,000	5,000	5,000	5,000	5,000
Total	207,549	432,493	517,928	530,837	543,581	557,056

2.4 Projected Return Flows

As part of the 2011 Region H Water Plan, the potential impact of Region C recommended reuse strategies on return flows in the Trinity Basin were evaluated. The projected water demands, return flows and reuse strategies from the upper Trinity Basin were analyzed to determine the level of return flows available to Region H in the lower Trinity Basin.

The 2006 Region C Water Plan estimated the level of projected future return flows estimated based on projected municipal and industrial (M\&I) water demands after the implementation of conservation measures. Return flow factors were determined from historical data (69% for the Metroplex and 50% for other counties). Recommended direct reuse projects were subtracted from the projected return flows to determine the net return flows available to the upper Trinity Basin. Table 6 presents the summary of projected return flow calculations presented in the Region C 2006 Water Plan. This number represents net return flows across the upper Trinity Basin.

Table 6 Region C 2006 Projected Upper Trinity Basin Return Flows
Values in Acre-feet per Year

	2010	2020	2030	2040	2050	2060
Demands	$1,563,725$	$1,858,601$	$2,092,965$	$2,328,370$	$2,607,058$	$2,943,509$
Conservation	51,370	106,427	148,159	188,500	230,232	277,434
Net Demands	$1,512,355$	$1,752,174$	$1,944,806$	$2,139,870$	$2,376,826$	$2,666,075$
Projected Return Flows	$1,022,392$	$1,181,415$	$1,307,898$	$1,437,611$	$1,595,689$	$1,789,184$
Proposed Reuse	372,112	601,685	724,073	743,867	780,471	796,279
Net Return Flows	650,280	579,730	583,825	693,744	815,218	992,905

Note: Projected Return Flows are based on (M\&I) Water Use in the Trinity Basin in Region C.

The return flow analysis presented in the 2006 Region C Regional Water Plan resulted in a minimum net annual return flow estimate of 579,730 acre-ft per year in the 2020 planning decade. However, this estimate was based largely on an assumed return flow factor of 69% from water demands in the Metroplex. The 69\% return flow factor was assumed from the TCEQ WAM Run 8 model and may not accurately reflect the return flow estimates during drought conditions. In December 2008, the draft Region C Water Conservation and Reuse Study was prepared by the Region C consultant team. As part of the study, projected return flows were re-analyzed using a reduced return flow factor reflecting severe drought conditions experienced in 2006. The revised return flow estimate assumed a return flow factor of 51% in 2010 and 2020, 52% in 2030 and 2040 , and 53% in 2050 and 2060. The reduced return flow factors presented in the Region C Conservation and Reuse Study suggest a more consumptive use of existing water supplies than previously estimated. Table 7 shows the revised return flow estimates based on information presented in the 2008 Draft Region C Water Conservation and Reuse Strategy.

Table 7 Region C 2008 Projected Upper Trinity Basin Return Flows
Values in Acre-feet per Year

	2010	2020	2030	2040	2050	2060
Demands	$1,563,725$	$1,858,601$	$2,092,965$	$2,328,370$	$2,607,058$	$2,943,509$
Conservation	51,370	106,427	148,159	188,500	230,232	277,434
Net Demands	$1,512,355$	$1,752,174$	$1,944,806$	$2,139,870$	$2,376,826$	$2,666,075$
Projected Return Flows	765,662	896,882	$1,004,341$	$1,115,359$	$1,247,968$	$1,404,851$
Proposed Reuse	350,476	613,996	751,286	781,515	817,876	832,360
Net Return Flows	415,185	282,886	253,055	333,844	430,092	572,491

Note: Projected Return Flows are based on M\&I Water Use in the Trinity Basin in Region C.
As can be seen in Table 7, the projected return flows are reduced significantly from previous estimates as a result of the revised return flow factors. The minimum annual return flow estimated in the 2008 draft Region C report is 253,055 acre-ft per year in the year 2030. This estimate represents an almost 50\% reduction from the previously estimated minimum annual return flow of 579,730 acreft per year in the year 2020.

Region C projected demands and reuse strategies downloaded from DB07 were analyzed assuming a reduced return flow factor of 50% in lieu of 69% as assumed in the Region C 2006 Plan. As can be seen in Table 8, the resulting net in-basin return flows are consistent with the results of the 2008 Region C Conservation and Reuse Study. There are some discrepancies. The total demands for Municipal and Manufacturing (M\&l) WUGS in the Trinity Basin inside of Region C were higher in DB07 than shown in the 2008 Region C Water Conservation and Reuse Study. The WUG demands from DB07 were sorted by region and by basin to only include the WUGs located within the Trinity Basin and Region C. This may include several WUGs located in the Trinity Basin that discharge wastewater outside of the Trinity Basin.

Table 8 DB07 Return Flow Analysis

Values in Acre-feet per Year

	2010	2020	2030	2040	2050	2060
Demands	$1,596,099$	$1,923,710$	$2,188,421$	$2,453,800$	$2,757,833$	$3,114,920$
Conservation	52,095	110,803	154,475	196,101	238,662	286,681
Net Demands	$1,544,004$	$1,812,907$	$2,033,946$	$2,257,699$	$2,519,171$	$2,828,239$
Return Flows	772,002	906,454	$1,016,973$	$1,128,850$	$1,259,586$	$1,414,120$
Proposed Reuse	381,657	627,507	761,415	774,472	812,259	826,588
Net Return Flows	390,345	278,947	255,558	354,378	447,327	587,532

Note: Projected Return Flows are based on M\&I Water Use in the Trinity Basin in Region C.

2.5 Simulated Return Flows

The projected return flows available to Region H were analyzed at the Oakwood Gage location marking the boundary between Region C and Region H. To model the projected return flows, several models were obtained from the Region C consultant to accurately model the net in-basin return flows associated with projected upper basin demands and projected strategies. The models were developed by the Region C Consultant team for the decades 2010, 2020, 2040 and 2060 to analyze projected return flows at the Oakwood gage. The results of the revised return flow projections were summarized in the 2008 Region C Conservation and Reuse Study. After performing a desktop analysis of Region C WUG demands and proposed reuse strategies downloaded from DB07, it was decided to adopt the return flow estimates projected in the 2008 Region C Water Conservation and Reuse Study for the analysis. The return flows projected in 2008 by the Region C consultant presents the most conservative estimation of future return flows with a minimum annual in-basin return flow of approximately 253,000 acre-ft per year in 2030. In March 2009, the Region H consultant team received the future condition WAM Models from the Region C consultants for use in evaluating the impacts projected return flows on water availability in Region H , specifically the yield of Lake Livingston.

The Water Rights Analysis Package (WRAP) WAM Run 3 was updated to include the projected Region C reuse strategies and in-basin return flows. The models were then used to quantify the return flows available to Region H . The return flows available to region H during the drought of record were quantified as the increase in regulated flow above the WAM Run3 baseline conditions. Figure 2-1 and Table 9 illustrate that not all of the net in-basin return flows projected in Region C will be available to Region H . The return flows will also be available to other water right holders for diversion and impoundment in upstream reservoirs.

Figure 2-1 Minimum Annual Return Flows at Oakwood Gage

Table 9 Return Flows at Oakwood Gage
Values in Acre-feet per Year

Return Flows	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 3 0}$	$\mathbf{2 0 4 0}$	$\mathbf{2 0 5 0}$	$\mathbf{2 0 6 0}$
Net Upper Basin	415,185	282,886	253,055	333,844	430,092	572,491
at Oakwood Gage	333,966	208,601	185,502	227,847	299,417	393,808
\% of Net Upper Basin Return Flows	80.4%	73.7%	73.3%	68.2%	69.6%	68.8%

Section 3 - Methodology

Two sets of models were created and executed to evaluate the firm yield of the Lake Livingston water rights. The first set of models was updated to include the projected upper basin return flows from Region C for each decade as modeled for the Region C Water Conservation and Reuse Study. These models were used to evaluate the firm yield of Lake Livingston in each decade. The second set of models was updated to quantify the minimum level of return flows necessary to firm up the Lake Livingston water rights. Return flows were iteratively added to these models until the full permitted yield of the reservoir was firm during drought of record conditions. The models were executed to evaluate the firm yield of Lake Livingston with projected return flows from Region C and to determine the minimum level of return flows required in each planning decade. The results were also compared to quantify the excess or shortage of return flows projected in each planning decade.

3.1 Trinity River WAM Firm Yield Analysis

The firm yield of the Lake Livingston water rights was evaluated using a modified version of the TCEQ WAM Run3. The WAM Run 3 presents the most conservative set of assumptions when evaluating water right availability by assuming full authorized diversions and complete consumption (no return flows) unless otherwise specified within the water rights permit. To simulate actual projected conditions, the model was revised to include anticipated return flows and planned reuse identified in the Region C 2008 Water Conservation and Reuse Study. The model was also revised to include future storage area vs storage volume (SA/SV) curves to account for the effects of projected sedimentation on reservoir yields. The year 2000 SA/SV records were inserted into the model to simulate the 2010 scenario. Decade 2030 SA/SV records were inserted to model the decades 2020, 2030, and 2040. Model simulations for decades 2050 and 2060 assumed the year 2060 sedimentation condition. Table 10 lists the WAM Run 3 models and assumptions utilized in the analysis.
"Planning groups should analyze existing surface water supplies based on firm yield for both reservoirs and surface water diversions. For reservoirs, firm yield is the maximum amount of water a reservoir can provide in a given year during drought of record conditions using reasonable sedimentation rates, and under the assumption that senior water rights holders have their full allotments of water." General Guidelines for Regional Water Plan Development (2007-2012), March 2008.

Table 10 Lake Livingston Firm Yield Models
with Anticipated Return Flows and Planned Reuse

Model	Net Upper Basin Return Flows (acre ft/year)	Lake Livingston SA/SV Curve
TR_RUN3FY_2010.dat	415,815	Year 2000
TR_RUN3FY_2020.dat	282,886	Year 2030
TR_RUN3FY_2030.dat	253,055	Year 2030
TR_RUN3FY_2040.dat	333,844	Year 2030
TR_RUN3FY_2050.dat	430,092	Year 2060
TR_RUN3FY_2060.dat	572,491	Year 2060

3.2 Trinity River WAM Iterative Firm Yield Analysis

The effects of return flows on the firm yield of the Lake Livingston water rights were simulated by iteratively adjusting the magnitude of return flow available at the boundary between Region C and Region H . Return flows from the upper basin were modeled with a Constant Inflow (Cl) record inserted at control point (CP) 8TROA, located at the boundary of Region H and Region C . The Cl record assumed a constant monthly distribution. The annual volume of the assumed return flows was increased until the full permitted yield of the Lake Livingston water rights was available during the drought of record.

As discussed in Section 3.1, the storage area capacity curve for Lake Livingston was updated to account for the effects of projected sedimentation in future decades. The year 2000 SA/SV records were inserted into the model to simulate the 2010 scenario. Decade 2030 SA/SV records were inserted to model the decades 2020, 2030, and 2040. Model simulations for decades 2050 and 2060 assumed the year 2060 sedimentation condition. Table 11 lists the WAM Run 3 models and assumptions utilized in the analysis.

Table 11 Lake Livingston Firm Yield

Model	Net Upper Basin Return Flows (acre ft/year)	Lake Livingston SA/SV Curve
TR_8TROA_2010.dat	280,000	Year 2000
TR_8TROA _2020.dat	280,000	Year 2030
TR_8TROA _2030.dat	280,000	Year 2030
TR_8TROA _2040.dat	280,000	Year 2030
TR_8TROA _2050.dat	285,000	Year 2060
TR_8TROA _2060.dat	285,000	Year 2060

Section 4 - Evaluation of Projected Return Flow on Lake Livingston

The impacts of projected upper basin return flows on the firm yield of Lake Livingston were analyzed for each decade in the planning period. The results are summarized in Section 4.1. The necessary level of return flows required to make the Lake Livingston water rights permit achieve 100% reliability was quantified for each decade in the planning period. The results are discussed in Section 4.2.

4.1 Lake Livingston Firm Yield

The firm yield of Lake Livingston is reduced in the decades 2020, 2030 and 2040 due to insufficient return flows from the upper Trinity Basin. Table 12 lists the firm yield of Lake Livingston for each of the planning decades studied. By 2020, increased reuse diversions in Region C are projected to reduce return flows available to Region H and consequently to reduce the firm yield of Lake Livingston during a drought-of-record by 55,000 acre-ft per year. By 2030, projected in-basin return flows are projected to be reduced to 253,055 acre-ft per year, which is the minimum level expected during the planning period. Under these assumed conditions, the firm yield of Lake Livingston in 2030 is projected to be 1,265,000 acre-ft per year, approximately 79,000 acre-ft per year less than the currently permitted diversion under the existing water rights permit.

Return flows in the upper Trinity Basin are expected in increase from the year 2030 through 2060. In 2040 the firm yield of Lake Livingston is projected to increase to $1,294,000$ acre-ft per year. The increase in firm yield is due to increased demands in the upper basin that will require the importation of additional out-of-basin supplies. By 2050, the firm yield of Lake Livingston is projected to be equal to the full permitted diversion. Table 12 shows the projected firm yield of the Lake Livingston water rights under these assumed conditions.

Table 12 Lake Livingston Firm Yield (acre-ft per year)

Return Flows	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 3 0}$	$\mathbf{2 0 4 0}$	$\mathbf{2 0 5 0}$	$\mathbf{2 0 6 0}$
Firm Yield	$1,344,000$	$1,289,000$	$1,265,000$	$1,294,000$	$1,344,000$	$1,344,000$
Reduction in Yield	0	$-55,000$	$-79,000$	$-50,000$	0	0

4.2 Necessary Level of Return Flows

The level of return flows required to achieve 100\% reliability during the drought-of-record for the permitted diversion of the Lake Livingston water rights was determined by an iterative analysis. Return flows were artificially added to the TCEQ WAM Run 3 model and the analysis was performed for each decade in the planning period.

The results of the analysis are shown graphically in Figure 4-1 by recording Lake Livingston storage volumes at the end of each month during the simulation. The baseline model shown in gray illustrates the storage volume of Lake Livingston assuming no return flows from the upper Trinity Basin. As can be seen from the graph, the firm yield of Lake Livingston is dependant on return flows. By adding return flows into the model, Lake Livingston is able to impound additional water during the drought of record. In Figure 4-1 the additional water impounded in the Lake is represented by increasing storage volumes. As return flows are increased, the minimum lake levels between April 1956 and April 1957 are decreased until the permitted diversion is met during the drought of record.

Figure 4-2 compares the results of the iterative return flow analysis with the return flows projected at the Oakwood Gage for each decade in the planning period. The figure shows that a minimum of 280,000 acre-ft per year is required from 2010 to 2040 to achieve 100% reliability for the Lake Livingston water rights. This minimum required level of return flow increases in 2050 and 2060 to 285,000 acre-ft per year to offset reduced storage from sedimentation. The figure shows that in 2010 a sufficient volume of return flow is available to "firm up" the Lake Livingston permitted diversions. In the decades 2020, 2030, and 2040, however, the projected return flows are insufficient to maintain the full yield of the water rights. In 2050 and 2060, return flow levels are projected to increase to levels that will support the full permitted diversion of the Lake Livingston water rights.

Figure 4-1 Lake Livingston Storage

Figure 4-2 Minimum Annual Flows at Oakwood

This Page Intentionally Left Blank

Section 5 - Findings and Conclusions

5.1 Summary of Findings

The results of this study consider conservative assumptions regarding the availability of return flows from Region C including full projected reuse and more consumptive use of existing and future water supplies. The reduction in projected return flows available to Region H are the result of a revision to the return flow factors used to estimate the amount of water returned in the upper Trinity Basin. The lower return flow factor indicates that demands in the upper basin are more consumptive than previously estimated, producing less net return flow to the basin. More consumptive use of water supplies in the upper Trinity Basin will reduce the amount of return flows available to Region H and will reduce the reliability of surface water rights in the lower Trinity Basin. The study shows that the firm yield of the Lake Livingston water rights may be temporarily reduced during the 2020, 2030 and 2040 decades as a result of these conservative return flow estimates from the upper Trinity Basin. By the year 2050 however, the projected return flows should be sufficient to maintain the full permitted diversion of the Lake Livingston water rights during the drought-of-record.

The firm yield of the Lake Livingston water rights was estimated for every decade in the planning period to evaluate the impacts of projected return flows from the upper Trinity Basin. The following statements describe whether sufficient return flows will be available to make the permitted yield of the Lake Livingston water rights 100% reliable during drought-of-record conditions. If sufficient return flows are not projected to be present, the reduction in the firm yield is listed.

- Sufficient return flows will be present in 2010.
- The firm yield of Lake Livingston will be reduced by 55,000 acre-ft per year in 2020.
- The firm yield of Lake Livingston will be reduced by 79,000 acre-ft per year in 2030.
- The firm yield of Lake Livingston will be reduced by 50,000 acre-ft per year in 2040.
- Sufficient return flows will be present in 2050.
- Sufficient return flows will be present in 2060.

The minimum level of return flows required to make the permitted yield of the Lake Livingston water rights 100% reliable during drought-of-record is approximately:

- 280,000 acre-ft per year required in 2010 - 2040 to maintain permitted diversions.
- 280,500 acre-ft per year required in 2050 and 2060.

5.2 Impacts on Recommended Region H Strategies

The 2006 Region H Water Plan recommended several water management strategies that relied on utilizing water supplies from Lake Livingston. During the decades 2020, 2030, and 2040, the firm yield of the Lake Livingston water rights is projected to be reduced which could possibly impact these proposed water management strategies. Although the firm yield of the Lake Livingston water rights is projected to be reduced, sufficient supplies are projected to be available in Lake Livingston resulting in no impact to the water management strategies proposed in the 2006 Region H Plan. The firm yield of the Lake Livingston water rights and the Region H demands projected to be supplied by the source are summarized below in Table 13 and illustrated in Figure 5-1.

Table 13 Lake Livingston Firm Yield vs Projected Demands (acre-ft per year)

	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 3 0}$	$\mathbf{2 0 4 0}$	$\mathbf{2 0 5 0}$	$\mathbf{2 0 6 0}$
Firm Yield	$1,344,000$	$1,289,000$	$1,265,000$	$1,294,000$	$1,344,000$	$1,344,000$
Projected Demands	820,020	966,102	$1,068,845$	$1,120,753$	$1,215,812$	$1,258,245$
Surplus	523,980	322,898	196,155	173,247	128,188	85,755

Figure 5-1 Lake Livingston Firm Yield vs Projected Demands

Lake Livingston Firm Yield

Appendix A

DB07 - Region C Municipal Demands in Trinity Basin

This Page

Intentionally Left Blank

WUG ID	WUG Name	WUG County Name	WUG Basin Name	TWD2010	TWD2020	TWD2030	TWD2040	TWD2050	TWD2060
034001000	ABLE SPRINGS WSC	KAUFMAN	TRINITY	539	841	1,069	1,321	1,634	2,022
030673000	ADDISON	DALLAS	TRINITY	8,932	10,235	11,145	11,778	12,220	12,528
030674000	ALEDO	PARKER	TRINITY	454	622	793	943	1,105	1,284
030008000	ALLEN	COLLIN	TRINITY	24,150	29,603	34,845	36,584	37,321	37,632
030810000	ALVORD	WISE	TRINITY	178	196	215	233	253	277
030813000	ANNA	COLLIN	TRINITY	1,317	2,688	4,033	5,377	7,169	11,201
030814000	ANNETTA	PARKER	TRINITY	203	254	295	330	368	409
030997000	ANNETTA SOUTH	PARKER	TRINITY	91	108	121	132	145	158
030677000	ARGYLE	DENTON	TRINITY	2,380	4,011	5,035	5,562	6,144	6,721
034007000	ARGYLE WSC	DENTON	TRINITY	862	863	863	863	863	863
030025000	ARLINGTON	TARRANT	TRINITY	81,692	95,026	101,591	104,733	106,828	107,875
030028000	ATHENS	HENDERSON	TRINITY	2,737	3,276	3,930	4,724	5,678	6,822
030758000	AUBREY	DENTON	TRINITY	481	903	1,471	1,977	2,657	3,571
030816000	AURORA	WISE	TRINITY	142	168	193	218	246	279
030031000	AZLE	PARKER	TRINITY	366	466	580	678	781	895
030031000	AZLE	TARRANT	TRINITY	1,655	2,337	3,338	4,506	5,675	6,676
030033000	BALCH SPRINGS	DALLAS	TRINITY	2,716	2,907	3,072	3,216	3,340	3,448
030999000	BARDWELL	ELLIS	TRINITY	108	138	168	199	234	271
030820000	BARTONVILLE	DENTON	TRINITY	1,008	2,240	3,136	3,696	3,921	4,033
034010000	BARTONVILLE WSC	DENTON	TRINITY	317	363	404	441	474	503
030044000	BEDFORD	TARRANT	TRINITY	10,418	10,916	11,336	11,688	11,984	12,233
030051000	BENBROOK	TARRANT	TRINITY	4,963	5,909	7,091	8,509	10,163	12,054
034016000	BETHEL-ASH WSC	HENDERSON	TRINITY	175	213	252	291	339	399
034017000	BETHESDA WSC	TARRANT	TRINITY	1,589	1,968	2,358	2,769	3,262	3,846
034024000	BLACKLAND WSC	ROCKWALL	TRINITY	151	223	273	328	392	467
030828000	BLOOMING GROVE	NAVARRO	TRINITY	152	152	152	152	152	152
030062000	BLUE MOUND	TARRANT	TRINITY	308	322	322	322	322	322
030829000	BLUE RIDGE	COLLIN	TRINITY	314	672	1,176	1,848	2,688	3,024
034028000	BOLIVAR WSC	COOKE	TRINITY	215	260	311	312	312	312
034028000	BOLIVAR WSC	DENTON	TRINITY	928	1,301	3,024	6,721	10,921	14,786
034028000	BOLIVAR WSC	WISE	TRINITY	196	254	329	482	670	1,005
030760000	BOYD	WISE	TRINITY	222	296	325	325	325	325
034029000	BRANDON-IRENE WSC	ELLIS	TRINITY	10	11	13	14	15	17
034029000	BRANDON-IRENE WSC	NAVARRO	TRINITY	28	30	32	35	38	42
030076000	BRIDGEPORT	WISE	TRINITY	1,616	1,983	2,850	3,395	3,956	4,734
034040000	BUENA VISTA - BETHEL SUD	ELLIS	TRINITY	569	702	769	875	1,006	1,159
030087000	BURLESON	TARRANT	TRINITY	821	1,045	1,275	1,518	1,810	2,154
034041000	CADDO BASIN SUD	COLLIN	TRINITY	192	239	298	358	420	487
030098000	CARROLLTON	DALLAS	TRINITY	11,087	11,197	11,373	11,487	11,603	11,724
030098000	CARROLLTON	DENTON	TRINITY	15,478	16,027	16,839	17,344	17,696	17,871
030102000	CEDAR HILL	DALLAS	TRINITY	8,229	10,521	12,445	14,061	15,416	16,554
030102000	CEDAR HILL	ELLIS	TRINITY	9	9	9	9	9	9

TLL＇Z	9てガて	280＇Z	29L＇I	TSガT	$9 \mathrm{S6}$	人 \perp INİ ${ }^{\text {P }}$	N17703	OSM \forall NOヨา7กว	000880ヶE0
6ャ6＇ε	عย9＇ع	T00＇E	ITでて	LEL＇T	てZカ＇ป	人 \perp INİ 1 －	$1 N \forall \triangle Y \forall \perp$	人ヨาMOצつ	000GヤT0\＆0
てZ6＇9	StG＇G	099＇ε	ャยて「て	OTع＇โ	88G	人 1 INİ ${ }^{\text {d }}$	NO＿NヨO	SO甘Oy Ssoyว	000TT0TE0
\＆GS＇乙	カ90＇乙	699＇โ	ISE＇โ	ع90＇T	6SL	人 \perp INİ 1	N $\forall W=\cap \cap>1$	$77 \forall$ ON \forall yつ	000 $29 \angle 080$
929＇t	979＇ャ	979＇t	979＇ャ	979＇ャ	886＇ε	人 \perp INİİ	ヨSIM	צ $\exists \mathrm{H} \perp \mathrm{O}-\lambda \perp \mathrm{N} \cap \mathrm{O}$	6ヤZLSL0EO
SES＇E	SEG＇ع	SES＇ع	SES＇${ }^{\text {c }}$	SES＇${ }^{\text {c }}$	SEG＇${ }^{\text {c }}$	$\widehat{\text { IINİC1 }}$			OZZLSLOEO
OヤI	0ヵT	OヵT	0ヵT	0ヤT	0ヤT	人 \perp INİ 1	$77 \forall M \times 1$	צヨH	66TLSL0E0
88て＇し	$9 \nabla G^{\prime}$ T	E08＇T	190＇乙	6Tع＇乙	9LG＇Z	人 \perp INİ ${ }^{\text {d }}$		צヨHคO－人1NกOつ	78TLSLOEO
9GZ	9GZ	992	9GZ	99Z	992	人 \perp INİ ${ }_{\text {d }}$	O¢	צヨH	SLTLSLOEO
LE8＇T	LE8＇T	LE8＇T	LE8＇T	LE8＇T	LE8＇T	人 \perp INİ ${ }_{\text {－}}$	N $\forall W=\cap \square$	¢ $\exists \mathrm{H} \perp \mathrm{O}-\lambda \perp \mathrm{N} \cap \mathrm{O}$	6ZTLSLOEO
80L	ヤヤ9	08S	STG	TSt	98ε	$\widehat{\text { LINİC1 }}$	YOVC	¢ ${ }^{\text {d }}$	6TLLSL0EO
L9Z	L92	L92	L9Z	892	892	人 \perp INİ\1		¢ $\exists \mathrm{H} \perp \mathrm{O}^{-\lambda} \mathrm{A} \mathrm{N} \cap \mathrm{O}$	LOTLSLOEO
LヵE	88ε	でも	とカt	6カワ	TSt		NOS入＊ 8 ¢	¢ $\exists \mathrm{H} \perp \mathrm{O}^{-\lambda \perp \mathrm{N}}$（	T60L9L0E0
6ST＇L	6ST「T	6ST「】	ZSI＇T	LZT＇T	8LO＇T			צヨH	T80LS 080
T9I	891	ELT	8LI	T8T	Z8T	人 \perp INİ 1	NINN $\forall-1$	¢ $3 \mathrm{H} \perp \mathrm{O}^{-\lambda \perp \mathrm{N} \cap O}$	ヤLOLSLOEO
6EO＇Z	680＇Z	6\＆0＇Z	680＇Z	680＇Z	6E0＇Z		SI77	¢ $\exists \mathrm{H} \perp \mathrm{O}^{-\lambda \perp \mathrm{N}}$（	0LOLSLOEO
S09＇91	Sて8＇ャワ	960＇عโ	OZと＇LI	20ガ6	こてガレ		NO \perp Nヨ	¢ $\exists \mathrm{H} \perp \mathrm{O}^{-\lambda \perp \mathrm{N} \cap \mathrm{O}}$	T90L9L0E0
EG	69	88	†TI	くヤて	06I	人 \perp INİ 1 ¢	S $\forall 7770$		LSOLSLOEO
ع90＇T	ع90＇T	ع90＇T	LSO＇T	てZO「し	$0 \angle 8$	人 \perp INİ ${ }_{\text {I }}$	$\exists \times 1003$	¢ $\exists \mathrm{H} \perp \mathrm{O}-\lambda \perp \mathrm{N} \cap \mathrm{O}$	670 ${ }^{\text {chLOEO }}$
†99	0 O9	EL9	عZL	ZLL	LZ8		NI7703	と ${ }^{\text {¢ }}$	と†0LSLOEO
L8G＇L	8ャT＇L	06L＇9	T6ヤ＇9	STで9	0G6＇G			\forall NVOISとOつ	000LET0E0
Z60＇L	カGL＇9	七0と＇9	8ヤG＇G	008＇t	†Z8＇ع		NOLNヨO	HıNİCOO	000T69080
899＇โ	9Sガ「	9ヤて＇し	0ヶ8	09G	カ0t	人 \perp INİ 1	NO\＆NヨO		0006ヤ8080
8GZ	LEZ	てIZ	Z8I	LヤT	90T		NO 1 Nヨ	$77 \exists d \mathrm{dO}$	000عET0E0
TLI＇0L	TLI＇0T	TLI＇0L	ILI＇0I	TLT＇0L	TLT＇0L		S $\forall 7770$	$77 \exists \mathrm{ddO}$	000ع\＆T080
6T	6T	8T	8T	8T	8T	人 \perp INİ ${ }^{\text {P }}$	ヨSIM	OSM 入 1 INกWWOO	000690ヶ\＆0
LLV	L9t	8St	TSt	カヤヤ	LET	人 \perp INİ 1	$\perp N \forall Y \cup \forall \perp$	OSM 入 1 INOWWOつ	000690ヶE0
60t	LZE	Z92	602	891	UTI	$\widehat{\sim} \mathrm{INI} \mathrm{C} \perp$	O¢d ${ }^{\text {d }}$		000890ヶE0
0ヤ¢	S6Z	ちGZ	8IZ	Z8T	IZT	人 \perp INİY 1	SI77ヨ		000890ヶ¢0
$\varepsilon 0 \varepsilon^{\prime}$ T	0ヤ0＇T	8Z8	959	Z0G	TZE	人 \perp INİ ${ }_{\text {d }}$	N $\forall W=\cap \square \backslash>$	OSM ヨNIaWOつ	000990ヶ\＆0
60t	OSE	S0E	TLZ	LعZ	ャ9I		S $\forall 7770$	OSM ヨNIGWOつ	000990ヶ\＆0
70G	OZt	ZSE	L6Z	Lヤて	T6I	$\widehat{\sim}$	N $\forall W=\cap \cup \backslash 1$	ヨNIGWOO	00099L0E0
ZIZ	98T	991	0SI	SEI	ヤOL		S $\forall 7770$	ヨNIaWOO	00099L0E0
ヤ66	298	0عL	66G	L9t	S\＆E	人 \perp INİ ${ }^{\text {P }}$	NOS入VY૭	ヨ7า1＾SNI77Oつ	000G9L0E0
66て＇01	GLて＇0T	\＆Iで0T	ع90＇01	L69＇6	66L＇8	人 \perp INİ ${ }_{\text {I }}$	ıN $\forall \triangle \forall \forall \perp$	ヨา7ı＾入ヨ770つ	000GZT0E0
E0t＇ε	LE8＇Z	T8¢＇乙	\＆โ0＇Z	T9カ＇T	カ七6	人 \triangle INİ 1	N $\forall W=\cap \cup \geqslant 1$	つSM ONกOW ヨจヨา70つ	000G90ヶ\＆0
てヤL	TーL	8EL	ZEL	OZL	$0 \angle 9$	人 \perp INİ ${ }_{\text {－}}$	S $\forall 77 \forall 0$	771H 7าヨy＞્રวОว	000TZT0E0
LヤG	8もt	G9E	86Z	6ヤZ	9IZ	$\widehat{\sim} \mathrm{INI} \mathrm{C} \perp$	$\exists \mathrm{SIM}$	OכIHO	000てヤ80\＆0
عโ8＇T	609＇โ	て9て＇I	SGO＇T	798	Z99	人 \perp INİ ${ }_{\text {－}}$			0006ヤ0ヶ¢0
ヤ09＇غย	カてT「6乙	てヤO「6I	ESL＇0T	080＇G	800＇T	人 \perp INİ® \perp	NI7703	\forall NI7ヨコ	00080T0E0
090ZOM1	0G0ZOM1	OtOZGM1	0ع0ZGM1	OZOZGM1	OTOZGM1	әurn u！seg 9 MM	auen Kıunoう эnM	auen 9nM	al $9 \cap M$

WUG ID	WUG Name	WUG County Name	WUG Basin Name	TWD2010	TWD2020	TWD2030	TWD2040	TWD2050	TWD2060
030151000	DALLAS	COLLIN	TRINITY	16,969	18,964	20,148	20,851	21,268	21,876
030151000	DALLAS	DALLAS	TRINITY	370,552	410,015	430,705	451,783	501,451	589,420
030151000	DALLAS	DENTON	TRINITY	7,900	8,492	8,787	8,934	9,007	9,043
030151000	DALLAS	ROCKWALL	TRINITY	6	6	6	6	6	6
034085000	DALLAS COUNTY WCID \#6	DALLAS	TRINITY	609	829	959	1,089	1,258	1,483
030692000	DALWORTHINGTON GARDENS	TARRANT	TRINITY	782	840	878	903	920	930
034086000	DANVILLE WSC	COLLIN	TRINITY	870	1,203	1,497	1,798	2,114	2,450
030855000	DAWSON	NAVARRO	TRINITY	180	193	205	219	236	256
030161000	DE SOTO	DALLAS	TRINITY	10,942	13,465	15,490	17,379	19,506	20,089
030153000	DECATUR	WISE	TRINITY	1,669	2,087	2,879	3,742	4,845	5,697
030159000	DENTON	DENTON	TRINITY	30,698	42,130	52,927	62,454	76,974	105,533
034089000	DENTON COUNTY FWSD	DENTON	TRINITY	1,008	1,614	2,184	2,771	3,367	3,990
030768000	DOUBLE OAK	DENTON	TRINITY	690	764	813	863	912	961
030171000	DUNCANVILLE	DALLAS	TRINITY	8,104	8,529	8,734	8,930	9,116	9,293
034094000	EAST CEDAR CREEK FWSD	HENDERSON	TRINITY	2,381	2,987	3,586	4,200	4,949	5,894
034096000	EAST FORK SUD	COLLIN	TRINITY	577	751	904	1,062	1,226	1,401
034096000	EAST FORK SUD	DALLAS	TRINITY	120	126	130	134	139	145
034096000	EAST FORK SUD	ROCKWALL	TRINITY	9	9	9	9	9	9
030180000	EDGECLIFF	TARRANT	TRINITY	471	471	471	471	471	471
030192000	ENNIS	ELLIS	TRINITY	3,589	4,594	5,881	7,528	9,637	12,336
030193000	EULESS	TARRANT	TRINITY	9,998	11,302	11,945	12,262	12,418	12,496
030864000	EUSTACE	HENDERSON	TRINITY	153	169	184	200	219	243
030194000	EVERMAN	TARRANT	TRINITY	837	915	992	1,069	1,146	1,159
030196000	FAIRFIELD	FREESTONE	TRINITY	1,143	1,257	1,371	1,485	1,600	1,714
030772000	FAIRVIEW	COLLIN	TRINITY	1,752	2,353	3,038	4,557	7,595	13,291
030198000	FARMERS BRANCH	DALLAS	TRINITY	11,366	12,369	13,282	14,112	14,866	15,552
030199000	FARMERSVILLE	COLLIN	TRINITY	586	1,113	1,591	2,386	3,499	4,772
030201000	FERRIS	ELLIS	TRINITY	341	341	341	341	341	341
034112000	FILES VALLEY WSC	ELLIS	TRINITY	145	158	171	184	199	216
034114000	FLO COMMUNITY WSC	FREESTONE	TRINITY	21	22	23	23	23	23
030204000	FLOWER MOUND	DENTON	TRINITY	17,205	22,851	26,883	30,916	33,335	34,972
030206000	FOREST HILL	TARRANT	TRINITY	1,847	2,015	2,187	2,369	2,576	2,705
030207000	FORNEY	KAUFMAN	TRINITY	2,016	4,301	5,377	6,273	6,990	7,671
034115000	FORNEY LAKE WSC	KAUFMAN	TRINITY	2,285	2,464	2,576	2,688	2,800	2,912
034115000	FORNEY LAKE WSC	ROCKWALL	TRINITY	1,792	2,464	2,576	2,688	2,800	2,912
030213000	FORT WORTH	DENTON	TRINITY	1,204	7,225	10,837	15,654	22,879	30,104
030213000	FORT WORTH	PARKER	TRINITY	2,890	12,523	19,266	22,156	25,287	27,696
030213000	FORT WORTH	TARRANT	TRINITY	147,856	167,210	196,093	239,362	301,825	380,214
030213000	FORT WORTH	WISE	TRINITY	482	2,408	3,372	4,335	5,780	7,225

20ε	20¢	20¢	208	20¢	ع0T		N17703	ヨNIHdヨSO¢	000tE0TE0
โZて＇し	عย0＇โ	Lヤ8	689	tSS	62t	人 IINI İ 1		ans 7Vyny linnoo nosnhoc	0009tで®0
6ZT	OIT	T6	εL	LS	\＆\downarrow	人 IINI I L	SI77	ans 7Vyny linnoo nosnhoc	0009LZセE0
TヤL	T \downarrow L	TヤL	TヤL	92L	ع0L	人 $\mathrm{IINI} \mathrm{I}_{1}$ I	YOVC	OपO日S＊习习¢	0002080ع0
TSG	七6t	Ett	L68	298	$\varepsilon 62$	人 $\mathrm{IINI} \mathrm{I}_{1}$ I	S177］	人7V1）	000662080
－$\dagger 0$＇$\varepsilon<$	96て＇TL	286＇89	976＇S9	LS8＇t9	ع8t＇99		S $V 77 \% 0$	－NI＾प्1	0008620E0
โعS＇8	620＇8	ZZO＇9	STO＇t	609＇Z	SSZ＇T	人 IINI İ 1	S $\forall 77 \forall 0$	SNIHO」nH	000t6z0E0
900＇6	$906{ }^{\text {＇8 }}$	6SL＇8	てヤS＇8	6Tて＇8	てヤL＇L	人 IINI I ¢ 1	INVYy	ISUnH	000ع6Z0ع0
$\varepsilon \angle Z^{\prime} \tau$	ع 20 ＇τ	668	TEL	679	I8E	人IINİIL	y gry $^{\text {d }}$	SYVO NOSOnH	000ع880E0
089＇L	ZTS＇T	tャع＇亡	とヵT「T	078	Z09	人 IINI IV 1	NOS＾＊VO	$\exists \mathrm{MOH}$	000982080
$\varepsilon 9 \varepsilon^{\prime} \downarrow$	OTع＇t	† \downarrow て＇t	てOT＇t	$\varepsilon \angle 8{ }^{\text {c }}$ ¢	8Lロ＇ε	人 IINI I ¢ 1	NOıNヨ	ヨפヲ7רI＾ONV7HอIH	00090LOEO
S9t＇t	ャعガナ	て0ガロ	$99 \varepsilon^{\prime} \downarrow$	Lてと＇ஏ	S8て＇ஏ	人 1 INİ ${ }^{\text {I }}$	S $\forall 77 \forall 0$		0009LZOEO
$6 \angle \tau$	6ヵT	七てT	20T	28	TG		$77 \forall$ MソフОบ	OSM LNIOd HOIH	000SOZった0
809＇L	$\varepsilon \varepsilon \varepsilon^{\prime} \tau$	ITI＇โ	Zع6	TLL	$\varepsilon \varepsilon \varsigma$	人 1 INİ ${ }^{\text {I }}$	NVWコロナ	OSM LNIOd HOIH	000SOZヤE0
8T	LI	9	91	ST	$\varepsilon \tau$	人LINİLI	NINN $\forall \pm$		000عOZヤを0
乙¢	LZ	†て	02	9	ZT	人 IINI I ¢ 1	N17703	ans ¢ᄏヨyo kyoxoli	000802ヶ¢0
89て＇乙	「9L＇L		Z60＇L	I68	LSG		NOLNヨ		000ヤOLOEO
L88＇L	LヵL＇L	S9T＇L	Z8S	$6 \downarrow \varepsilon$	†てZ		NOıNヨ	$\mathrm{NO} \mathrm{Nag}^{\text {a }}$	0009LLOEO
906＇S	ع06＇t	$8 \vdash 0 \times t$		OS9＇Z	962＇L	人 1 INİ ${ }^{\text {I }}$	$77 \forall M$ YOOU	$\mathrm{H} \perp \forall \exists \mathrm{H}$	000ZOLOEO
86ヵ＇L	86け＇し	86ヵ＇し	86ヶ＇し	998	8Zt	人LINİİ	INVY ${ }^{\text {d }}$－	1ヨ7SVH	0006L80E0
690＇6	عโ0＇6	T06＇8	LL9＇8	0عて＇8	$98 \varepsilon^{\prime} L$	人 IINI İ 1	INVY ${ }^{\text {d }}$－	人 1 IO WO	000t9z0E0
$\varepsilon \downarrow$ ¢	98ε	OZ\＆	L82	6 IZ	$\angle \nabla T$	人 IINI İ 1	NOıNヨ		000とZOTE0
カ¢9	TSt	ع82	902	SST	EOT	人LINİİ	NOS＾＊Z9		
$68 \mathrm{t}^{\prime} \mathrm{I}$	カ8て＇T	260＇L	606	ELL	089	人 \perp INİ ${ }^{\text {I }}$－	NI7703	JSM $7 \forall$ Yny y yinno	
OSZ＇L	ITI＇L	ZL6	$\varepsilon \varepsilon 8$	t 69	LTt		NOSAV\％9	yヨ⿺𠃊	0009L80E0
T89＇2	てعでて	9¢6＇L	6ZL＇L	809＇โ	ャ8て＇โ	人 IINI İ 1	NOS ${ }^{\text {a }}$ AONヨH	人॥Iつ 7ヨyyyg Nกจ	000669080
0ヤL＇6T	カヤで6さ	ZSS＇8T	06S＇LI	6ヤで9T	S08＇${ }^{\text {I }}$	人 IINI İ 1	INVY ${ }^{\text {d }}$	ヨNI＾ヨd ${ }^{\text {a }}$	0006ヤZOEO
St6＇6	989＇6	88て＇6	SL9＇8	ZEL＇L	Z8て＇9	人LINİ ${ }^{\text {I }}$	INVY ${ }^{\text {d }}$（1）	ヨıliblyd anvyo	000StZOEO
†9T＇ε	てぃでて	LIS＇I	$\varepsilon 06$	T98	LL	人 $\mathrm{IINI} \mathrm{I}_{1}$ I	S177］	ヨlylvyd anvyo	000StてOEO
TLE＇\dagger S	T88＇97	t09＇68	Lてع＇દ์	00カ＇82	Z08‘とZ		S $V 77 \% 0$	ヨıપibyd anvys	000StZOEO
8t0＇โ	298	OZL	ع6S	69t	とャE	人 1 INİ ${ }^{\text {I }}$	SI77	SLHOİH NNヨ79	000L690E0
LZ8＇L	9 ${ }^{\text {a }}$＇T	カTS＇I	$8 \varepsilon \varepsilon^{\prime} \tau$	$6 ヤ \tau^{\prime} \tau$	tャ6	人 IINI I ¢ 1	S $677 \forall 0$	SLHOIヨH NNヨ79	000L69080
E0L＇Z	カIて＇て	6T8＇โ	009＇L	88て＇L	968	人 $\ 1$ INİ 1	NVWコกV＊		000LEL७ ${ }^{0} 0$
SSt＇9S	SSti9S	600＇ャG	98T＇TS	$\angle 86{ }^{\prime} \angle \nabla$	LZて＇ロナ	人 IINI İ 1	S $\forall 77$ O		0000عZ0E0
2ヶ6＇s	0عt＇S	OZO＇s	OT9＇t	6 T ＇t	โT8＇$¢$	人 IINI I ¢ 1	ヨ＞003	97ר1＾SヨNIV9	000GZZOEO
6ZT	8TI	OIT	عOT	96	68	人 \triangle INİ ${ }^{\text {l }}$	O $⿻$ ¢ $4 \forall \wedge \forall \mathrm{~N}$	ISOU」	0008980E0
عT8＇88	LE9＇LE	9Lでゅを	ZLS＇62	28t＇8T	عદ8＇ST	人 IINI İ 1	NOINヨ	OOSİ ${ }^{\text {a }}$	000tzZ0E0
000＇Z9	9T8＇6S	6IT＇99	とてカ＇ZS	9ZL＇8t	ャヤで0¢	人 $\ 1$ INİ 1	NI7703	OJSİg	000IZZOE0
090ZGM1	OSOZOM1	OtOZGM1	0عOZOM1	OZOZGM1	OTOZGM1	әuren u！seg כnM	әuren Kıunoう כnM	amen כnM	al OnM

WUG ID	WUG Name	WUG County Name	WUG Basin Name	TWD2010	TWD2020	TWD2030	TWD2040	TWD2050	TWD2060
030784000	JUSTIN	DENTON	TRINITY	516	903	1,457	2,395	2,924	3,226
030313000	KAUFMAN	KAUFMAN	TRINITY	1,202	1,825	2,188	2,479	2,770	3,341
030315000	KELLER	TARRANT	TRINITY	9,341	11,152	11,152	11,152	11,152	11,152
030711000	KEMP	KAUFMAN	TRINITY	185	185	185	185	185	185
030318000	KENNEDALE	TARRANT	TRINITY	1,388	1,675	1,869	2,001	2,089	2,149
030712000	KERENS	NAVARRO	TRINITY	405	405	405	405	405	405
034223000	KIOWA HOMEOWNERS WSC	COOKE	TRINITY	514	551	571	574	573	573
030892000	KRUGERVILLE	DENTON	TRINITY	171	196	228	296	386	554
030785000	KRUM	DENTON	TRINITY	495	708	877	1,176	1,512	1,932
030337000	LAKE DALLAS	DENTON	TRINITY	1,257	1,529	1,669	1,765	1,832	1,878
030341000	LAKE WORTH	TARRANT	TRINITY	952	1,059	1,176	1,294	1,411	1,470
031036000	LAKESIDE	TARRANT	TRINITY	454	527	601	679	773	884
030345000	LANCASTER	DALLAS	TRINITY	7,953	12,725	15,906	19,087	21,632	23,223
034230000	LAVON WSC	COLLIN	TRINITY	383	616	902	1,803	2,834	3,864
034230000	LAVON WSC	ROCKWALL	TRINITY	348	616	804	1,007	1,245	1,525
030352000	LEONARD	FANNIN	TRINITY	308	358	499	785	1,142	1,427
030355000	LEWISVILLE	DALLAS	TRINITY	1	1	1	1	1	1
030355000	LEWISVILLE	DENTON	TRINITY	21,309	26,697	30,647	33,332	35,285	37,301
031018000	LINCOLN PARK	DENTON	TRINITY	138	208	264	322	381	442
030899000	LINDSAY	COOKE	TRINITY	157	168	174	175	175	175
030790000	LITTLE ELM	DENTON	TRINITY	5,565	8,513	10,104	10,104	10,104	10,104
031039000	LOG CABIN	HENDERSON	TRINITY	99	135	155	155	155	155
031041000	LOWRY CROSSING	COLLIN	TRINITY	322	413	494	576	663	2,505
030718000	LUCAS	COLLIN	TRINITY	1,075	1,655	2,016	2,604	3,696	5,041
034239000	LUELLA WSC	GRAYSON	TRINITY	506	569	613	638	654	743
034241000	M E N WSC	NAVARRO	TRINITY	456	501	551	597	635	690
030375000	MABANK	HENDERSON	TRINITY	76	82	87	93	99	108
030375000	MABANK	KAUFMAN	TRINITY	530	647	767	900	1,065	1,270
030383000	MALAKOFF	HENDERSON	TRINITY	431	457	483	509	542	582
030384000	MANSFIELD	ELLIS	TRINITY	124	278	484	755	1,116	1,589
030384000	MANSFIELD	TARRANT	TRINITY	13,442	19,603	25,203	30,804	34,164	34,164
030911000	MAYPEARL	ELLIS	TRINITY	147	147	147	147	147	147
030379000	MCKINNEY	COLLIN	TRINITY	25,134	41,231	60,241	81,835	97,595	112,014
031042000	MCLENDON-CHISHOLM	ROCKWALL	TRINITY	204	265	317	373	440	518
030914000	MELISSA	COLLIN	TRINITY	2,420	4,481	5,825	7,169	8,961	11,201
030401000	MESQUITE	DALLAS	TRINITY	29,572	36,041	41,585	44,727	46,021	46,317
030401000	MESQUITE	KAUFMAN	TRINITY	-	1	1	1	1	2

88t	OZヤ	ャ9\＆	LIE	ヤLZ	\＆દ乙	人 \perp INİ ${ }^{\text {P }}$	OYZ	ヨכIપ્વ	000Lヤ60\＆0
660＇ε	S8G＇Z	99て＇乙	ャ69＇ป	カ8て＇し	$\varepsilon 09$		ヨSIM	$\exists \mathrm{WOH}$	0009†60\＆0
L8E	9LE	998	9SE	SbE	โعย		צヨY丬	ONヨy	0006\＆L0E0
عIL＇乙	LSE＇乙	ャย0＇乙	StL＇I	と97＇T	とカでし		SI77	Y \forall O वヨy	000LELOEO
8ع9	ヤ8S	8EG	66t	29t	OZt	人 \perp INİ \perp	$77 \forall M \times 1$	OSM H－כ－】	000عโEちE0
T00＇L	てヤガ9	T88＇9	IZ6＇ع	0ヵでて	STS		NO\＆Nヨ	yヨdSOUd	00066L0E0
Z00＇ャI	Z9T＇ET	てZE＇乙I	TZ6＇01	T9G＇L	T90＇Z		N17703	yヨdSOUd	00066L0E0
Z09＇ZI	T0ガ8	TちO＇S	ヤZO＇E	089＇T	002	人 \perp INİ ${ }_{\text {I }}$	NI7703	NO＾ヨONİdd	000L8ヤ080
68L＇9	TI9＇9	LTL＇S	ELS＇E	L8L＇T	$\varepsilon ャ 9$	人 \perp INİC \perp	NO\＆Nヨ	YヨaNOd	000TZ0TE0
98て＇乙	こんでて	LSて＇Z	とカでて	OZて＇て	8LG＇T	人 1 INİ ${ }^{\text {d }}$	NO\＆Nヨ	ON $\forall 7$ d	000ZLャ0\＆0
TヤG＇98	とャ9＇を8	9ヤL＇08	8ャ8＇LL	8\＆6＇ヤL	\＆8て＇てL	人 \perp INİ 1 －	N17703	ON $\forall 7$ d	000ZLヤ0\＆0
OZS＇乙	69ع＇乙	ととでて	970＇Z	カ9L＇L	SGて＇I	人 \perp INİ ${ }_{\text {d }}$	NO\＆Nヨ	LNIOd \perp O7ld	000G9ャ0\＆0
Z8E	てヤ¢	90\＆	LLZ	LIZ	ャ9I		$\perp N \forall \ Y \forall \perp$	人 $\forall 9 \mathrm{~N} \forall$ I7 ${ }^{\text {a }}$	000G6L0EO
¢0¢	ZLZ	とヤ乙	9Jて	06I	ャ9I	人 \perp INİ ${ }_{\text {L }}$	S1773	771H NVOヨd	0009E6080
LEZ	6TZ	S0Z	E6I	T8T	69I	人 \perp INİ 1		S9NİdS \exists N人 \forall d	000ヤع6080
てTて＇0Z	0LL＇ヤI	90T‘0L	6Tて＇9	Lとで「	عャ6＇T	人 \perp INİ 1	N17703	צヨコ＞1 \forall d	000ع\＆L0E0
LS9	LS9	LS9	LS9	LS9	LS9	人 1 INİ\1	$\pm N \forall \triangle y \forall \perp$	O〇ヨıN \forall d	000ヤGヤ080
	乙てE	T0E	E8Z	992	8ヤて		S177］	¢ \exists W7 \forall d	000TELOEO
896＇โ	896＇L	896＇L	6GL＇I	LOカ＇T	6ヶ0＇T	人 \perp INİ ${ }_{\text {L }}$	S177］	$\forall 771 \wedge 0$	00062L0EO
9ZG	6SE	SカZ	L9I	カโI	LL	人 1 INİ\1	S $\forall 77 \forall 0$	$\forall 771 \wedge 0$	00062L0E0
L66＇T	Z0L＇I	Oマカ＇T	てカで「	EL8	LZG	人 1 INİ\1	NO 1 Nヨ0	LNIOd $\times \forall$ O	0000ع6080
$\varepsilon 89$	S09	ワEG	T $\angle \nabla$	60t	Lヵ¢	人 \perp INİ 1	S177ヨ	－$\forall \exists 7 \times 1$	0006Z6080
8โを	992	七てZ	06T	091	0\＆I	人 \perp INİ 1	N \forall WコП \forall ¢		0008Z6080
T99＇ε	LOE＇ε	OGL＇Z	8G8＇T	$\angle 96$	808		NO\＆NヨO	$\exists \times 7 \mathrm{H} \perp$	0000Z0TE0
$00 \varepsilon^{\prime} \angle T$	St6＇9T	6Iナ「9I	てヤ9＇ST	て6ガヤI	L8L＇ZI	人 1 INİ\1			0009をヤ080
ESI＇乙	L88＇T	8\＆9＇T	$66 \varepsilon^{\prime}$	L9T＇T	†06	人 1 INİ 1	NI7703	OSM NI7רOכ H上УON	0008LZャを0
LL8	6 Z9	99t	0عE	OGZ	091	人 1 INİ\1	ヨSIM	Y $\ \forall M \exists \mathrm{~N}$	0000Z6080
$\varepsilon 6 Z^{\prime} \varepsilon$	て8ガし	886	6S9	G6E	ZLZ	人 \perp INİ ${ }_{\text {¢ }}$	N17703	ヨdOH MヨN	000عZ6080
009	SOS	†て巾	ZSE	$6 \angle Z$	ヤOZ		ヨSIM	MヨI＾UIVヨ MヨN	000んヤOTE0
OZ8＇T	8Z2	Lと	8I2	28T	IL		NI7703	$\forall \square \forall \wedge \exists \mathrm{N}$	000Gヤ0TE0
ع92＇T	0TO＇T	808	Lャ9	LTS	09E	人 \perp INİ 1	O	OSM S7רIW O	000\＆โ七七\＆0
06G＇ε	SSO＇E	ヤヤG＇乙		ZSG＇L	8S6	人 \perp INİ ${ }_{\text {¢ }}$	NO 1 Nヨ	OSM ЭNV」S＠W	000TLZヤEO
990＇9	990＇9	990‘9	990＇9	990‘9	969＇T	人 \perp INİ ${ }_{\text {¢ }}$	N17703	人HdYOW	000ヤてLOEO
699	809	L৮G	ع6t	9ヤワ	G8E	人 1 INİ\1	ヨ＞003	とヨıSNヨ	0008Tヤ080
LZ6	G68	9 98	LEL	8G9	Lヤヤ	人 \perp INİ 1	$77 \forall M \times 1$	OSM NOIZ \perp W	0000LZっE0
609＇乙	て0I＇乙	OTL＇T	T8け＇โ	$96 \varepsilon^{\prime}$ T	カヤて＇T	人 \perp INİ ${ }_{\text {L }}$	S1773	JSM Y	00069てヤE0
602	602	602	602	602	602	人 \perp INİ 1	N17703	OSM N V OI77IW	000LGZヤE0
88	88	88	88	88	88	人 \perp INİ ${ }_{\text {L }}$	S177	Q dOJ7IN $^{\text {a }}$	0009T6080
88L＇0T	L9L＇6	9てヤ＇8	ヤ06＇9	L99＇t	GZ6＇Z	人 \perp INİ 1	S177ヨ	NVIH」Oר］IW	000G0ヶ0\＆0
090ZOM1	OGOZGM1	OちOZOM1	080ZGM1	OZOZGM1	OTOZGM1	әuen u！seg כחM	әuen Kıunoう эnM	әure 5 MM	Cl $9 \cap M$

WUG ID	WUG Name	WUG County Name	WUG Basin Name	TWD2010	TWD2020	TWD2030	TWD2040	TWD2050	TWD2060
034409000	RICE WSC	ELLIS	TRINITY	132	177	222	267	318	374
034409000	RICE WSC	NAVARRO	TRINITY	855	1,077	1,307	1,557	1,855	2,222
030498000	RICHARDSON	COLLIN	TRINITY	7,023	10,854	10,854	10,854	10,854	10,854
030498000	RICHARDSON	DALLAS	TRINITY	25,820	26,178	26,178	26,178	26,178	26,178
030499000	RICHLAND HILLS	TARRANT	TRINITY	1,355	1,452	1,548	1,661	1,726	1,750
030505000	RIVER OAKS	TARRANT	TRINITY	1,042	1,042	1,042	1,042	1,042	1,042
030800000	ROANOKE	DENTON	TRINITY	1,209	1,960	3,080	4,201	5,601	6,747
034325000	ROCKETT SUD	DALLAS	TRINITY	340	426	477	528	594	683
034325000	ROCKETT SUD	ELLIS	TRINITY	4,161	5,119	5,607	6,370	7,323	8,430
030513000	ROCKWALL	ROCKWALL	TRINITY	8,603	15,402	19,883	22,403	22,995	22,995
030521000	ROWLETT	DALLAS	TRINITY	10,997	14,152	16,238	17,925	19,291	20,397
030521000	ROWLETT	ROCKWALL	TRINITY	1,617	1,722	1,725	1,725	1,725	1,725
031059000	RUNAWAY BAY	WISE	TRINITY	329	405	478	550	632	726
030742000	SACHSE	COLLIN	TRINITY	741	1,212	1,404	1,485	1,520	1,546
030742000	SACHSE	DALLAS	TRINITY	2,350	2,953	3,446	3,894	4,301	4,670
030527000	SAGINAW	TARRANT	TRINITY	2,956	3,692	4,162	4,505	4,755	4,938
031072000	SAINT PAUL	COLLIN	TRINITY	198	496	991	1,586	1,884	1,983
030535000	SANGER	DENTON	TRINITY	2,333	2,950	3,518	4,195	4,704	4,901
030539000	SANSOM PARK VILLAGE	TARRANT	TRINITY	623	644	661	673	683	691
034330000	SARDIS-LONE ELM WSC	DALLAS	TRINITY	8	8	8	8	8	8
034330000	SARDIS-LONE ELM WSC	ELLIS	TRINITY	1,718	1,770	1,782	1,982	2,366	2,869
030547000	SEAGOVILLE	DALLAS	TRINITY	2,574	2,961	3,295	3,656	3,938	4,241
030547000	SEAGOVILLE	KAUFMAN	TRINITY	3	4	6	7	10	12
030959000	SEVEN POINTS	HENDERSON	TRINITY	181	217	252	288	333	389
030803000	SHADY SHORES	DENTON	TRINITY	320	464	566	671	777	888
034336000	SOUTH GRAYSON WSC	COLLIN	TRINITY	220	227	235	238	242	246
034336000	SOUTH GRAYSON WSC	GRAYSON	TRINITY	176	279	367	470	587	734
030570000	SOUTHLAKE	DENTON	TRINITY	336	672	1,008	1,344	1,949	2,016
030570000	SOUTHLAKE	TARRANT	TRINITY	11,620	13,960	15,168	15,792	16,114	16,280
034341000	SOUTHWEST FANNIN COUNTY SUD	FANNIN	TRINITY	5	8	9	10	10	11
030574000	SPRINGTOWN	PARKER	TRINITY	521	694	868	1,042	1,215	1,389
030749000	SUNNYVALE	DALLAS	TRINITY	1,815	2,540	3,266	3,992	4,718	4,827
031065000	TALTY	KAUFMAN	TRINITY	866	1,356	1,860	2,419	3,111	3,968
030596000	TEAGUE	FREESTONE	TRINITY	338	459	507	561	611	662
030599000	TERRELL	KAUFMAN	TRINITY	3,643	4,469	5,193	5,669	6,136	6,819
030752000	THE COLONY	DENTON	TRINITY	5,513	7,214	8,115	8,373	8,631	8,708
030974000	TIOGA	GRAYSON	TRINITY	196	445	623	712	784	819
030976000	TOM BEAN	GRAYSON	TRINITY	268	304	345	365	385	406
030753000	TOOL	HENDERSON	TRINITY	419	479	538	598	671	764

Appendix B

DB07 - Region C Industrial Demands in Trinity Basin

This Page

Intentionally Left Blank

DB07 - Region C Industrial Demands in Trinity Basin

WUG ID	WUG Name	WUG County Name	WUG Basin Name	TWD2010	TWD2020	TWD2030	TWD2040	TWD2050	TWD2060
031001043	MANUFACTURING	COLLIN	TRINITY	3,607	4,137	4,654	5,170	5,633	6,115
031001049	MANUFACTURING	COOKE	TRINITY	273	306	335	364	389	421
031001057	MANUFACTURING	DALLAS	TRINITY	34,115	37,791	41,148	44,214	46,703	46,983
031001061	MANUFACTURING	DENTON	TRINITY	1,068	1,239	1,408	1,579	1,731	1,880
031001070	MANUFACTURING	ELLIS	TRIIITY	3,466	3,670	3,841	3,987	4,089	3,912
031001091	MANUFACTURING	GRAYSON	TRINITY	2	2	2	2	2	2
031001107	MANUFACTURING	HENDERSON	TRINITY	110	118	133	151	172	195
031001129	MANUFACTURING	KAUFMAN	TRINITY	760	813	869	928	993	1,061
031001175	MANUFACTURING	NAVARRO	TRINITY	1,172	1,328	1,468	1,607	1,730	1,872
031001184	MANUFACTURING	PARKER	TRINTY	548	618	685	751	809	878
03100199	MANUFACTURING	ROCKWALL	TRIIITY	12	14	16	17	19	21
031001220	MANUFACTURING	TARRANT	TRINITY	17,258	20,444	23,630	26,924	29,919	32,457
O31001249	MANUFACTURING	WISE	TRINITY	2,313	2,660	2,979	3,277	3,539	3,858
Total				64,704	73,140	81,168	88,971	95,728	99,655

Appendix C

DB07 - Region C Conservation Supply in Trinity Basin

This Page

Intentionally Left Blank

WMS Project ID	Project Name	SRC Name	WUG ID	WUG Name	WUG County Name	WUG Basi	SS2010	SS2020	SS2030	SS2040	SS2050	SS2060
C01CONSMFG	MANUFACTURING CONSERVATION	CONSERVATION	03100104	MANUFACTURING	COLLIN	TRINITY	-	6	72	108	119	130
C01CONSMFG	MANUFACTURING CONSERVATION	CONSERVATION	031001049	MANUFACTURING	COOKE	TRINITY	-	1	7	10	11	12
C01CONSMFG	MANUFACTURING CONSERVATION	CONSERVATION	03100105	MANUFACTURING	DALLAS	TRINITY	-	68	781	1,135	1,212	1,258
C01CONSMFG	MANUFACTURING CONSERVATION	CONSERVATION	031001061	MANUFACTURING	DENTON	TRINITY	-	2	29	44	49	53
C01CONSMFG	MANUFACTURING CONSERVATION	CONSERVATION	03100110才	MANUFACTURING	HENDERSON	TRINITY	-	-	3	4	5	5
C01CONSMFG	MANUFACTURING CONSERVATION	CONSERVATION	03100112	MANUFACTURING	KAUFMAN	TRINITY	-	1	15	22	23	25
C01CONSMFG	MANUFACTURING CONSERVATION	CONSERVATION	03100117	MANUFACTURING	NAVARRO	TRINITY	-	1	16	23	25	27
C01CONSMFG	MANUFACTURING CONSERVATION	CONSERVATION	031001184	MANUFACTURING	PARKER	TRINITY	-		4	6	7	7
C01CONSMFG	MANUFACTURING CONSERVATION	CONSERVATION	031001194	MANUFACTURING	ROCKWALL	TRINITY	-	-			1	1
C01CONSMFG	MANUFACTURING CONSERVATION	CONSERVATION	03100122	MANUFACTURING	TARRANT	TRINITY	-	35	413	630	711	784
C01CONSMFG	MANUFACTURING CONSERVATION	CONSERVATION	03100124	MANUFACTURING	WISE	TRINITY	-	1	12	18	19	21
C01CONSACC	MUNICIPAL CONSERVATION-ACCELERATED	CONSERVATION	$03015100 ¢$	DALLAS	COLLIN	TRINITY	316	242	20	-	-	-
C01CONSACC	MUNICIPAL CONSERVATION-ACCELERATED	CONSERVATION	030151000	DALLAS	DALLAS	TRINITY	6,891	5,235	437		-	
C01CONSACC	MUNICIPAL CONSERVATION-ACCELERATED	CONSERVATION	030151000	DALLAS	DENTON	TRINITY	147	108	9	-	-	
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030008000	ALLEN	COLLIN	TRINITY	708	1,430	1,960	2,346	2,694	3,019
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030813000	ANNA	COLLIN	TRINITY	43	141	243	366	543	936
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030829000	BLUE RIDGE	COLLIN	TRINITY	5	25	48	80	125	150
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034041000	CADDO BASIN SUD	COLLIN	TRINITY	4	13	17	22	28	34
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030103000	CELINA	COLLIN	TRINITY	31	259	630	1,263	2,157	2,750
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	03075704	COUNTY-OTHER	COLLIN	TRINITY	14	41	41	40	38	36
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034083000	CULLEOKA WSC	COLLIN	TRINITY	21	80	102	126	154	185
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	$03015100 ¢$	DALLAS	COLLIN	TRINITY	435	782	986	1,149	1,318	1,407
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034086000	DANVILLE WSC	COLLIN	TRINITY	30	76	106	141	182	231
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034096000	EAST FORK SUD	COLLIN	TRINITY	10	36	47	58	71	86
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030772000	FAIRVIEW	COLLIN	TRINITY	48	105	160	275	520	1,017
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030199000	FARMERSVILLE	COLLIN	TRINITY	6	38	59	96	151	221
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	$03022100 ¢$	FRISCO	COLLIN	TRINITY	1,319	4,345	5,104	5,924	6,805	7,561
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034146000	GUNTER RURAL WSC	COLLIN	TRINITY	12	43	53	67	82	100
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034203000	HICKORY CREEK SUD	COLLIN	TRINITY	-	1	1	2	2	3
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	031031000	JOSEPHINE	COLLIN	TRINITY	1	13	14	15	16	16
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034230000	LAVON WSC	COLLIN	TRINITY	8	34	52	110	182	260
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	031041000	LOWRY CROSSING	COLLIN	TRINITY	10	23	31	40	51	214
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030718000	LUCAS	COLLIN	TRINITY	37	64	84	116	175	254
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030379000	MCKINNEY	COLLIN	TRINITY	931	2,996	4,851	7,228	9,407	11,700
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030914000	MELISSA	COLLIN	TRINITY	87	240	357	497	693	956
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034257000	MILLIGAN WSC	COLLIN	TRINITY	3	11	12	13	13	14
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030418000	MUENSTER	COOKE	TRINITY	11	25	31	38	47	57
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030724000	MURPHY	COLLIN	TRINITY	51	337	384	431	479	527
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	031045000	NEVADA	COLLIN	TRINITY	2	8	12	26	50	139
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030923000	NEW HOPE	COLLIN	TRINITY	7	19	36	62	105	259
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034278000	NORTH COLLIN WSC	COLLIN	TRINITY	31	76	102	131	166	206
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030733000	PARKER	COLLIN	TRINITY	55	186	322	604	1,000	1,530
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030472000	PLANO	COLLIN	TRINITY	1,937	3,439	4,180	4,970	5,800	6,692
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030487000	PRINCETON	COLLIN	TRINITY	9	55	108	194	350	563
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030799000	PROSPER	COLLIN	TRINITY	64	373	626	806	966	1,140
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030498000	RICHARDSON	COLLIN	TRINITY	185	474	561	643	726	812
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030742000	SACHSE	COLLIN	TRINITY	22	65	87	103	117	132
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	031072000	SAINT PAUL	COLLIN	TRINITY	6	28	63	113	149	172
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034336000	SOUTH GRAYSON WSC	COLLIN	TRINITY	4	11	12	13	14	15
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	031069000	WESTON	COLLIN	TRINITY	5	41	92	299	584	1,108
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030669000	WYLIE	COLLIN	TRINITY	281	877	1,196	1,816	2,059	2,420
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	$03402800 ¢$	BOLIVAR WSC	COOKE	TRINITY	3	12	14	15	16	17
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	03075704	COUNTY-OTHER	COOKE	TRINITY	12	46	51	55	58	61
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030225000	GAINESVILLE	COOKE	TRINITY	111	222	282	342	411	496
CO1CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034223000	KIOWA HOMEOWNERS WSC	COOKE	TRINITY	6	21	24	26	28	29
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030899000	LINDSAY	COOKE	TRINITY	5	10	12	13	14	16
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030981000	VALLEY VIEW	COOKE	TRINITY	3	17	31	46	83	110
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034403009	WOODBINE WSC	COOKE	TRINITY	9	33	39	44	50	57

WMS Project ID	Project Name	SRC Name	WUG ID	WUG Name	WUG County Name	WUG Basi	SS2010	SS2020	SS2030	SS2040	SS2050	SS2060
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034409000	RICE WSC	NAVARRO	TRINITY	12	49	63	80	101	128
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	03067400 g	ALEDO	PARKER	TRINITY	15	37	53	71	91	116
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030814000	ANNETTA	PARKER	TRINITY	3	13	16	19	22	26
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030997000	ANNETTA SOUTH	PARKER	TRINITY	1	5	6	7	9	10
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030031009	AZLE	PARKER	TRINITY	18	16	22	27	34	41
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030757184	COUNTY-OTHER	PARKER	TRINITY	29	106	100	93	84	74
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030213009	FORT WORTH	PARKER	TRINITY	79	598	1,068	1,394	1,783	2,170
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030883000	HUDSON OAKS	PARKER	TRINITY	6	26	36	47	60	75
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030739009	RENO	PARKER	TRINITY	4	16	18	19	21	22
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030574000	SPRINGTOWN	PARKER	TRINITY	17	42	58	78	100	125
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	03437300 g	WALNUT CREEK SUD	PARKER	TRINITY	33	125	157	189	226	268
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	03063400 g	WEATHERFORD	PARKER	TRINITY	149	339	461	587	732	906
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030756000	WILLOW PARK	PARKER	TRINITY	20	49	40	50	60	73
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034024000	BLACKLAND WSC	ROCKWALL	TRINITY	2	10	13	16	21	26
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	03075719	COUNTY-OTHER	ROCKWALL	TRINITY	1	4	5	5	5	6
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034096000	EAST FORK SUD	ROCKWALL	TRINITY	-	-	-	-	-	1
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034115000	FORNEY LAKE WSC	ROCKWALL	TRINITY	59	130	156	183	211	242
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030702009	HEATH	ROCKWALL	TRINITY	52	131	190	263	358	478
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034205000	HIGH POINT WSC	ROCKWALL	TRINITY	1	4	5	6	8	10
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034230000	LAVON WSC	ROCKWALL	TRINITY	8	34	47	62	80	103
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	031042000	MCLENDON-CHISHOLM	ROCKWALL	TRINITY	3	11	14	17	22	27
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034270000	MT ZION WSC	ROCKWALL	TRINITY	13	33	42	53	64	73
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034313000	R-C-H WSC	ROCKWALL	TRINITY	12	26	32	38	46	55
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030513000	ROCKWALL	ROCKWALL	TRINITY	247	737	1,106	1,422	1,643	1,827
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030521000	ROWLETT	ROCKWALL	TRINITY	48	93	106	120	133	146
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030669000	WYLIE	ROCKWALL	TRINITY	6	19	27	37	50	57
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	03002500 g	ARLINGTON	TARRANT	TRINITY	2,252	4,627	5,714	6,662	7,596	8,507
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030031009	AZLE	TARRANT	TRINITY	79	80	124	182	245	309
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030044000	BEDFORD	TARRANT	TRINITY	283	529	632	734	841	953
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030051000	BENBROOK	TARRANT	TRINITY	119	287	398	540	722	950
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034017000	BETHESDA WSC	TARRANT	TRINITY	21	82	106	132	165	207
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030062000	BLUE MOUND	TARRANT	TRINITY	4	15	16	17	18	19
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030125000	COLLEYVILLE	TARRANT	TRINITY	243	454	550	639	724	808
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034069000	COMMUNITY WSC	TARRANT	TRINITY	6	21	23	24	26	28
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	03075722	COUNTY-OTHER	TARRANT	TRINITY	41	150	161	171	182	192
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030145000	CROWLEY	TARRANT	TRINITY	17	66	90	131	169	195
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030692000	DALWORTHINGTON GARDENS	TARRANT	TRINITY	21	40	49	57	65	73
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030180000	EDGECLIFF	TARRANT	TRINITY	14	28	31	35	38	41
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030193000	EULESS	TARRANT	TRINITY	272	539	655	761	862	963
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030194000	EVERMAN	TARRANT	TRINITY	11	41	47	53	60	65
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030206000	FOREST HILL	TARRANT	TRINITY	23	84	98	113	130	144
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030213009	FORT WORTH	TARRANT	TRINITY	4,067	7,988	10,869	15,061	21,286	29,792
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030245000	GRAND PRAIRIE	TARRANT	TRINITY	187	422	538	645	744	841
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030249000	GRAPEVINE	TARRANT	TRINITY	375	747	944	1,137	1,328	1,518
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030261000	HALTOM CITY	TARRANT	TRINITY	216	265	306	340	371	401
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030879000	HASLET	TARRANT	TRINITY	13	47	94	105	117	128
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030293000	HURST	TARRANT	TRINITY	214	416	494	568	643	719
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	034216000	JOHNSON COUNTY RURAL SUD	TARRANT	TRINITY	5	18	24	32	41	52
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	$03031500 ¢$	KELLER	TARRANT	TRINITY	279	597	685	770	859	948
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	03031800	KENNEDALE	TARRANT	TRINITY	57	151	181	209	233	256
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030341000	LAKE WORTH	TARRANT	TRINITY	28	59	75	91	110	125
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	031036000	LAKESIDE	TARRANT	TRINITY	20	49	61	74	90	110
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030384000	MANSFIELD	TARRANT	TRINITY	396	975	1,451	2,016	2,510	2,784
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030435000	NORTH RICHLAND HILLS	TARRANT	TRINITY	366	758	936	1,102	1,264	1,424
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030454000	PANTEGO	TARRANT	TRINITY	18	32	37	42	47	52
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	$03079500 ¢$	PELICAN BAY	TARRANT	TRINITY	3	12	14	16	19	22
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	030499000	RICHLAND HILLS	TARRANT	TRINITY	40	49	57	65	73	79
C01CONSBAS	MUNICIPAL CONSERVATION-BASIC	CONSERVATION	03050500¢	RIVER OAKS	TARRANT	TRINITY	12	43	46	49	52	55

WMS Project ID	Project Name	SRC Name	WUG ID	WUG Name
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030401000	MESQUITE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	03072900	OVILLA
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030498000	RICHARDSON
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030521000	ROWLETT
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030742000	SACHSE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030749000	SUNNYVALE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030669000	WYLIE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030677000	ARGYLE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	034007000	ARGYLE WSC
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030758000	AUBREY
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030820000	BARTONVILLE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	03401000	BARTONVILLE WSC
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030098000	CARROLLTON
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030133000	COPPELL
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	03069100	CORINTH
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	031011000	CROSS ROADS
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030151000	DALLAS
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030159000	DENTON
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	03408900	DENTON COUNTY FWSD
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030204000	FLOWER MOUND
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030213000	FORT WORTH
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030221000	FRISCO
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030706000	HIGHLAND VILLAGE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030784000	JUSTIN
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030355000	LEWISVILLE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030790000	LITTLE ELM
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030930000	OAK POINT
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030472000	PLANO
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	031021000	PONDER
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030799000	PROSPER
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030800000	ROANOKE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030535000	SANGER
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030806000	TROPHY CLUB
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	034040000	BUENA VISTA - BETHEL SUD
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030192000	ENNIS
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030245000	GRAND PRAIRIE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030384000	MANSFIELD
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030911000	MAYPEARL
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030405000	MIDLOTHIAN
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	034269000	MOUNTAIN PEAK WSC
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	03072900	OVILLA
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030737000	RED OAK
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	034330000	SARDIS-LONE ELM WSC
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030633000	WAXAHACHIE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030978000	TRENTON
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030196000	FAIRFIELD
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030974000	TIOGA
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030286000	HOWE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030976000	TOM BEAN
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030619000	VAN ALSTYNE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030650000	WHITESBORO
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030028000	ATHENS
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	034094000	EAST CEDAR CREEK FWSD
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030864000	EUSTACE
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030934000	PAYNE SPRINGS
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030767000	CRANDALL
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	030207000	FORNEY
C01CONSEXP	MUNICIPAL CONSERVATION-EXPANDED	CONSERVATION	034115000	FORNEY LAKE WSC

Appendix D

DB07 - Region C Current Reuse Supplies in Trinity Basin

This Page

Intentionally Left Blank

6ヤぐヤ8	006 ＇ 88	002＇z8	ع¢8＇18	ع99＇08	Otع＇6L							18101
Z2	$\varepsilon 乙$	02	8T	91	\＆	人LINİİ	N17703	NO＾＊7 ヨSnヨy 1כヨylani	人LINİİ	$77 \forall M$ ¢0О	317＾M	000699080
9T	ST	ST	$\checkmark \tau$	$\varepsilon \tau$	IT	人LINİİ	N17703	NO＾＊า 3 Sกヨy 1 Oヨylani	人LINİİ	S $\forall 77 \forall 0$	$317 \wedge M$	000699080
976	6 t 6	b66	208	892	†29	人LINIXI	N17700		人LINIIX 1	N17703	ヨ17入M	000699080
ع8て＇${ }^{\text {c }}$	t00＇ε	†てL＇Z	Sカカ＇Z	99t＇Z	988＇L	人LINİİ	S177		人LINİİ	S177	ヨIHOVHVXVM	000ع¢9080
¢ ε	8ε	切	9 t	87	6 t	人LINİİ	N17703	NO＾＊า \exists Snヨy 1 OヨyIani	人LINİİ	NOLNヨO	\NO7Oこ ヨ ${ }^{\text {¢ }}$	000ZSLOEO
18T	SST	2\＆โ	¢TT	$\angle 6$	62	人LINİİ	N17703	NO＾＊7 3 Snヨy 1כヨylani	人 1 INIİ 1	N $\forall W=\cap$ V	人 $17 \forall 1$	000990te 0
¢TZ	622	こTZ	L6T	08T	L9T	人LINİİ	N17700	NO＾＊7 ヨSกヨy 10ヨylani	人LINİİ	S＊77＊	$\exists 7 \forall \wedge$ NNN	00067 2080
000＇ε	$000 ' \varepsilon$	$000 ' \varepsilon$	000＇ε	$000 ' \varepsilon$	000＇ε	人LINİİ	N $\forall W \pm \cap$ \＃	ヨSกヨy เכヨּ｜a	人LINİİ		पヨMOd JİLIOヨ7 W W	6ZIZ00te0
ع98＇ε	ع98＇દ	ع98＇દ	208＇	ST9＇Z	860＇乙	人LINİİ	S177	ヨSกヨy เכヨּ｜a	人LINİİ	SI77		0LOZOOTEO
ع98＇ε	ع98＇є	6ャ8＇Z	88て＇て	0ャ8＇L	โع8	人LINİİ	NOIN30	ヨSกヨy 1 ¢ヨ丬ا	人LINİY	NOLNヨO		T90Z00te 0
8	L	9	9	9	OT	人LINIEI	N17703		人LINİİ	S $777 \forall 0$		LSOZOOTEO
LS	ZS	87	97	97	SL	人LINİİ	N17703		人LINİY	N17703		\＆ャ0z00te
58	68	28	8 S	$\dagger \varepsilon$	8	人LINİİ	N17703		人LINIX 1	NI7703	7 Bd INIVS	000ZLOTE0
502	LOZ	902	802	602	LIZ	人LINİİ	N17703	NO＾＊7 ヨSกヨy 1כヨylani	人LINİİ	S $\forall 77 \forall 0$	ヨSHOVS	000Z +1080
89	\＆	82	58	98	89	人LINİİ	N17703	NO＾＊7 ヨSกヨy 10ヨylani	人LINİİ	NI7703	ヨSHOVS	000Z +1080
262	STE	ع62	692	028	822	人LINIXI	N17700		ヨNIGVS	$77 \forall M \times$ OOУ	人LIO ヨS＾OU	000zzs080
t＜t	0＜I	0ヵT	S0T	LL	0ε	人LINİİ	N17700		ヨNIGVS	NI7703	人॥I ヨs＾Ȯ	000zzs080
SL	\＆8	T6	80T	ZZT	6ヵT	人LINİİ	N17703		人LINİİ	$77 \forall M \times$ OOy	117 ${ }^{\text {a MOY }}$	000tzs080
I68	†て6	Lt6	t 26	000＇L	0to＇L	人LINİİ	N17703		人LINİY	S $\forall 77 \forall 0$	1137 MOY	000tzs080
TZO＇T	6TI＇T	S6T＇T	DOZ＇T	960＇โ	S6L	人LINİİ	N17703	NO＾＊7 ヨSกヨy 1כヨylani	人LINIEX	$77 \forall$ MYOOZ	$77 \forall$ M	0008TS080
SST＇T	992＇t	$66 \varepsilon^{\prime} \tau$	66S＇T	698＇L	T0カ＇て	人LINIXI	N17703	NO＾＊7 ヨSnヨy 1Jヨylani	人LINIXI	S $\forall 77 \forall 0$	NOSayVHJİ	00086ヶ0ع0
6Lt	SZS	085	$\varepsilon 99$	SLL	\＆S9	人LINİİ	N17703	NO＾＊7 ヨSกヨy 1 OヨyIani	人LINİİ	NI7703	NOSayVHJİ	00086ヶ080
LZ	LZ	82	62	乙¢	6ε	人LINİİ	N17703	NO＾＊7 ヨSกヨy 1כヨylani	人LINİİ	$77 \forall$ M ${ }^{\text {a }}$	OSM H－J－¢	000\＆tete
0ヶて	てぃて	Tちて	08T	9 TT	92	人LINIXI	N17703	NO＾＊7 3 Snヨy 1כヨylani	人LINIXI	NOINヨa	y ${ }^{\text {dSSOYd }}$	00066L0E0
18 t	76t	SOS	TOS	$\varepsilon 6 \varepsilon$	S0T	人LINİİ	N17703	NO＾＊7 ヨSกヨy 1 Oヨylani	人LINİİ	NI7703	Y ${ }^{\text {d }}$ dSOYd	00066 2080
2\＆G	68ε	992	SLI	SIT	$\varepsilon 9$	人LINİY	N17703	NO＾＊7 ヨSกヨy 1כヨylani	人LINİİ	N17703	NOLヨONİd	00028t080
T0T	OTT	LZT	98τ	8ST	97T	人LINİİ	N17703		人LINİY	NOINヨO	ONV7d	000zLt0E0
乙\＆8＇ε	6SO＇t	$9 \tau \varepsilon^{\prime} \downarrow$	ZZL＇t	8\＆ع＇G	L89＇9	人LINİİ	N17703	NO＾＊7 ヨSกヨy 10ヨylani	人LINİİ	N17703	ONV7d	000ZLDOEO
768	9TL	LعS	tLE	662	T8T	人LINİİ	N17703	NO＾＊7 ヨSกヨy 10ヨylani	人LINİİ	N17703		$0008 \varepsilon \angle 0 \varepsilon 0$
$\varepsilon \tau$	ZI	IT	IT	IT	2T	人LINIXI	N17703		人LINIXI	N \forall Wコก \forall ¢		000826080
$\varepsilon 6$	68	58	ع8	28	$\varepsilon 8$	人LINİİ	N17703	NO＾＊7 3 Snヨy 1כヨylani	人LINİİ	N17703	OSM NITTOO HIYON	0008Lてヤع0
9ヵT	ZL	ZS	Ot	82	SZ	人LINİİ	N17703	NO＾＊7 3 Snヨy 1 OヨyIaNI	人LINİİ	NI7703	$\exists \mathrm{dOH} \mathrm{M}$ IN	0008z6080
T8	S	$\varepsilon 乙$	$\varepsilon \tau$	$\varepsilon \tau$	L	人LINIXI	N17703	NO＾＊7 ヨSnヨy 1כヨylani	人LINİİ	N17703	$\forall \square \forall \wedge \exists \mathrm{N}$	000st0tE0
T9T	TL	97	92	92	LT	人LINİİ	N17703	NO＾＊7 ヨSกヨy 1כヨylani	ヨNIGVS	NI7703		000st0te0
992	T62	6IE	$\varepsilon 9 \varepsilon$	Sで	LヵT	人LINİİ	N17703	NO＾V7 ヨSกヨy 1כヨylani	人LINİİ	NI7703	AHdynw	000tZLOEO
07	\＆t	$\varepsilon \downarrow$	St	Lt	てt	人LINİİ	N17703		人LINİY	77VMッフО	OSM NOIZ 1 W	0000Lてヤを0
T90＇8	98て＇6	Et9＇0T	ZST＇ZI	カLO＇サT	086＇ST	人LINİİ	ヨSIM	ヨSกヨy เכヨ빔	人LINİİ	ヨSIM	ONINIW	6ちてE00tع0
8	6	OT	ZI	カT	6 T	人LINİİ	N17700	NO＾＊7 \exists Sกヨy 1 IJヨylani	人LINİİ	NI7703	OSM NVפוֹרוֹ｜	000LSてヤと0
عL6＇T	8ちt＇て	S0\＆＇乙	6とぢて	OTS＇2	S0L＇Z	人LINIXI	N17703		人LINİİ	S $\forall 77 \cup 0$	ヨıInర̇SヨW	000tot080
267	0¢t	LLE	StE	60ε	602	人LINIXI	N17703		人LINİİ	NI770）	\forall SSITヨW	000tt6080
22	02	6 L	8T	8	8T	人LINİİ	N17703	NO＾V7 ヨSกヨy－	人LINİİ	$77 \forall$ M ${ }^{\text {¢ }}$	W7OHSIHJ－NOQNヨ7כW	000Zヤ0t80
†T0＇s	L8L＇t	ع0t＇t	6L9＇ε	$976{ }^{\text {a }}$	โย์＇乙	人LINİİ	N17703	NO＾＊7 ヨSnヨy 1כヨylani	人LINIİ 1	NI770	\ヨNNİ\OW	0006LE0E0
T	T	T	I	I	I	人 1 INİİ	N17703	NO＾＊7 ヨSกヨy 1כヨylani	人LINİİ	$77 \forall M \times 00 \cup$		66TI00tE0
T	I	I	I	T	I	人LINİİ	N17703	NO＾＊7 ヨSกヨy 10ヨylani	قNIGVS	77VMソООУ	ONIYกIOV	66Tt00tع0
乙¢	$\varepsilon \varepsilon$	†	98	6ε	\angle	人LINIX1	N17703	NO＾＊7 ヨSกヨy 1 IJヨylani	人LINİY	N $\forall W=\cap$ ®	ONİก	62TT00tE0
0902SM	OSOZSM	0t02SM	080ZSM	OZOZSM	OTOZSM	amen ulseg oxs	amen Kıunos כ̇d	amen כys	amen uiseg כnM	amen Kıunos כnM	aure OnM	al OnM

Appendix E

DB07 - Region C WMS Reuse Supplies in Trinity Basin

This Page

Intentionally Left Blank

Appendix 3D

Region H Drought
Contingency Plans

This Page Intentionally Left Blank

Table 3D-1
Major Water Provider Drought Triggers

Table 3D-1
Major Water Provider Drought Triggers

MWP	Drought Type	Trigger Condition			Time requirement	Actions	
TRA		Huntsville RWSS	Livingston RWSS	Trinity County RWSS			
	Mild	Demand > 6 MGD for 30 days	$\begin{aligned} & \text { Demand > } 2 \text { MGD for } 15 \\ & \text { days } \end{aligned}$	Wellfield or plant capacity <1000 gpm, or use 5% > allocation	Condition ceases to exist for 5 days	Voluntary reductions, monthly updates	
	Moderate	days \qquad	Demand > 2.25 MGD for 10 days	Wellfield or plant capacity $<850 \mathrm{gpm}$, or use 15% > allocation	Condition ceases to exist for 5 days	Ban non-esential use, prep pro-rata reduction plan	
	Severe	Demand > 7.5 MGD for 10 days	Demand > 2.5 MGD for 5 days	Wellfield or plant capacity $<700 \mathrm{gpm}$, or use $25 \%>$ allocation	Condition ceases to exist for 5 days	Initiate pro-rata reduction plan	
	Emergency	Major system failure (>50\% of delivery capacity lost) or supply contamination	Major system failure (>50\% of delivery capacity lost) or supply contamination	Major system failure (>50\% of delivery capacity lost) or supply contamination	Until condition corrected	Inform customers, make specific response based on situation	
TRA		Lake Livingston I Wallisville System					
	Mild	Lake Livingston elev < 126.50 ft at USGS gage			Condition ceases to exist for 5 days	Modify gate operations, voluntary reductions, monthly updates	
	Moderate	Lake Livingston elev < 124.00 ft at USGS gage			Condition ceases to exist for 5 days	No new contracts, initiate mandatory reductions and pro-rata curtailments	
	Severe	Lake Livingston elev < 121.40 ft at USGS gage			Condition ceases to exist for 5 days	Terminate supply to lowpriority customers, additional mandatory reductions	
	Emergency	Major system failure (>50\% of delivery capacity lost) or supply contamination			Until condition corrected	Inform customers, make specific response based on situation	

Table 3D-2 Source-Specific Drought Triggers Established by Major Water Providers						
Water Source	Drought Type	Trigger Condition	Time Requirement		Established By	Actions
			Initiation	Termination		
Trinity River						
Lake Livingston	Mild	Combined storage (Lakes Livingston, Conroe \& Houston) is less than 24 months surface water supply	Condition exists 10 consecutive days	Condition ceases for 30 consecutive days	Houston	Inform the public and request voluntary reductions
	Serious	Combined storage (Lakes Livingston, Conroe \& Houston) is less than 18 months surface water supply	Condition exists 10 consecutive days	Condition ceases for 30 consecutive days	Houston	Ban non-essential outdoor use and listed water waste
	Severe	Combined storage (Lakes Livingston, Conroe \& Houston) is less than 12 months surface water supply	Condition exists 10 consecutive days	Condition ceases for 30 consecutive days	Houston	Ban all outdoor use and listed water waste
Lake Livingston / Wallisville System	Mild	Lake Livingston elev < 126.50 ft at USGS gage	Condition exists for one day	Condition ceases to exist for 5 days	TRA	Modify gate operations, voluntary reductions, monthly updates
	Moderate	Lake Livingston elev < 124.00 ft at USGS gage	Condition exists for one day	Condition ceases to exist for 5 days	TRA	No new contracts, initiate mandatory reductions and prorata curtailments
	Severe	Lake Livingston elev $<121.40 \mathrm{ft}$ at USGS gage	Condition exists for one day	Condition ceases to exist for 5 days	TRA	Terminate supply to low-priority customers, additional mandatory reductions

	uolsnor			K｜ddns ıәłем әэセдйs sułuou 	әәләऽ	
	uOisnor		sкер әл！！nวәзuo๐ ot sts！xa uo！̣！puoכ	 	snouəs	
	uolsnoh			Kiddns „əґем әэедиns sułuou 	p！！	uolsnor әуе
	＊VIS				әәләऽ	
	VपCs	$\begin{array}{r} \text { sरep } \\ \hline \text { ıоы səseəว uo!̣!puoう } \end{array}$			әџелрроW	
uo！̣enıasuoo Kıetunjo＾ısanbay	VYCS				p！！w	әоıиоО әуеา
		ио！̣еи！̣шəə	ио！̣！！！！u｜			
suo！̣ov	Ka pays！！qeısヨ	ఫนәшə！！	วบ्ன әш！		әdKı \downarrow ¢ 6 noda	әэınos дәңем
sıәр！лолд ләұем ло！ew Кq pәчs！！qeısヨ z－aE əqュ						

Table 3D-2
Source-Specific Drought Triggers

Water Source	Drought Type	Trigger Condition	Time Requirement		Established By	Actions
			Initiation	Termination		
Brazos River						
Hempstead Gauge	Mild	14.00 ft or 2200 cfs	Condition exists for one day	Condition ceases for 30 consec. days	GCWA	Notify BRA, monitor situation daily
	Moderate	13.71 ft or 2000 cfs	Condition exists for one day	Condition ceases for 30 consec. days	GCWA	Alert customers, increase maintenance
	Watch	13.41 ft or 1800 cfs	$\begin{aligned} & \text { Condition exists for one } \\ & \text { day } \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Condition ceases for } 30 \\ \text { consec. days } \end{array} \\ \hline \end{array}$	GCWA	Request stored water releases, if needed
	Warning	12.93 ft or 1500 cfs	Condition exists for one day	$\begin{array}{\|l} \hline \begin{array}{l} \text { Condition ceases for } 30 \\ \text { consec. days } \end{array} \\ \hline \end{array}$	GCWA	Request stored water releases
Richmond Gauge	Mild	12.19 ft or 1700 cfs	Condition exists for one day	Condition ceases for 30 consec. days	GCWA	Notify BRA, monitor situation daily
	Moderate	11.93 ft or 1500 cfs	Condition exists for one day	Condition ceases for 30 consec. days	GCWA	Alert customers, increase maintenance
	Watch	11.65 ft or 1300 cfs	Condition exists for one day	Condition ceases for 30 consec. days	GCWA	Request stored water releases, if needed
	Warning	11.23 ft or 1000 cfs	day Condition exists for one	$\begin{aligned} & \text { Condition ceases for } 30 \\ & \text { consec. days } \\ & \hline \end{aligned}$	GCWA	Request stored water releases
BRA Local Reservoirs	Watch	Storage is < Stage 1 Trigger level and could be reduced to Stage 2 Trigger or less during the next 12 months	Condition exists for one day	Condition ceases for 30 consecutive days	BRA	Inform/meet with customers, urge activation of drought contingency plans, prepare/initiate specific drought response plan, activate storage in Federal reservoirs
	Warning	Storage is < Stage 2 Trigger level and could be reduced to Stage 3 Trigger or less during the next 12 months	Condition exists for one day	Condition ceases for 30 consecutive days	BRA	Inform/meet with customers, require activation of drought contingency plans, evaluate alternative actions, update specific drought reponse plan, activate storage in Federal reservoirs
	Emergency	Storage is < Stage 3 Trigger level	day Condition exists for one	Condition ceases for 30 consecutive days	BRA	Continue Stage 1 \& 2 actions, additional actions as deemed necessary

						ィə！！！
			＇s｜ə＾əə ıə！！			
						ג！！！${ }^{\text {nb }}$ epuedS
			＇sıəлә｜גə！！			
						גə！！
						12！！
	『प8				Kэиวбıəшヨ	
 әџерdn ‘suопрэе әппеиәдие 	४ 8 ¢		әuo rot sts！xa uo！u！puoj	sцłuow ZT ऐxəu әчł 反u！unp 	6ulurem	
 	＊ 7 a	sКер әл！̣nวəsuoว 0 亿		 	ЧЈэем	
		ио！ฺеи！̣иә」	иo！pe！！u｜			
suo！̣フV	Kg pays！！qets	ұиәшә！！	วу्य әш！	ио！！？puoう „бб6！ı」		әэınos ıәғеМ

Appendix 3E

Potential Reservoir Sites

This Page Intentionally Left Blank

Region H
Table 3E: Previously Studied Potential Reservoir Sites

LARGE RESERVOIR SITES (OVER 50,000 ACRE-FEET)									
Reservoir / River Basin	Yield, Acre-Feet		Recommended Project in the 2007 Texas State Water Plan	Recommended Unique Site in the 2007 Texas State Water Plan	Original Cost at Dam, Million \$	䓌	Comments	U U U0 ¢ ¢	
Allens Creek Brazos Basin	99,650	10	Yes	$\begin{gathered} \text { No (see } \\ \text { comments) } \end{gathered}$	\$169.0 in 1997	6	This project has been designated as a unique reservoir site by the Texas Legislature. A water right permit has been granted to the BRA and City of Houston. Detailed design and environmental studies are on-going.		
Bedias Trinity Basin	90,732	4	No	Yes	\$50.7 in 1975	12	This project has been designated as a unique reservoir site by the Texas Legislature. Some endangered species have been identified. There are 24,675 acres lost of which 7,328 acres of bottomland hardwoods and 15,327 units of wildlife habitats are lost. Included in Region C Water Plan for TRA.	3	
	70,705	2			\$50.8 in 1975	7			
	84,370	1					Site is listed in the Trinity River Basin Master Plan.	11	
Cleveland San Jacinto Basin	65,900		No	No	\$76.5 in 1975		Some endangered species have been identified. There are 11,485 acres lost of which 2,330 acres of bottomland hardwoods and 4,845 units of wildlife habitats are lost. Alternative site in the 1997 Texas Water Plan.	3	
(Lower) Lake Creek San Jacinto Basin	53,767	4	No	No	\$65.5 in 1975	r	Some endangered species have been identified. There are 10,904 acres lost of which 2,200 acres of bottomland hardwoods and 6,195 units of wildlife habitats are lost. Site is listed in COH Master Plan.	3, 4	
	67,213	12			\$275.0 in 1990	12			
	73,012	2							
Little River Brazos Basin	129,000	8	No	Yes			Also included in Brazos G Regional Water Plan. This project has been designated as a unique reservoir site by the Texas Legislature.	8	
Little River - Off Channel Brazos Basin	32,110	8	Yes	Yes	96.0 in 2001		Also included in Brazos G Regional Water Plan. This project has been designated as a unique reservoir site by the Texas Legislature.	8	
Millican/Panther Creek Brazos Basin	252,032	4	No	No	\$318.0 in 1971	Some endangered species have been identified. There are 63,410 acres lost of which 26,730 acres of bottomland hardwoods and 29,323 units of wildlife 7 habitats are lost. Reservoir site also included in Brazos G Regional Water Plan		3,	
	248,600	2							
	252,225	12							
	235,200	8							
Millican/Bundic Crossing Brazos Basin	73,800	8	No	No			Formerly called Millican-Peach Creek. The site contains a large lignite deposit. Also included in Brazos G Regional Water Plan.	9	
Tehuacana Trinity Basin	282,500	12	No	Yes	\$156.0 in 1995	A few endangered species have been identified. There are 14,804 acres lost of which 6,993 acres of bottomland hardwoods and 9,093 units of wildlife habitats are lost. This site contains a lignite deposit. Site is listed in the Trinity River 5 Basin Master Plan and Region C Water Plan.		$\begin{aligned} & 3, \\ & 9, \\ & 11 \end{aligned}$	
	61,068	1							

						I	068＇もて	
II			V／N	O^{N}	${ }^{\mathrm{O}} \mathrm{N}$	ZI	カ69｀「I	
						I	عIS｀8Z	
II			V／N	O^{N}	O^{N}	ZI	£8L｀ऽZ	
						I	698＇tを	
II			V／N	${ }^{0} \mathrm{~N}$	${ }^{0} \mathrm{~N}$	ZI	8LI＇0Z	u！̣eg Ki！u！uL 8u！y 8uot
II			V／N	${ }^{\mathrm{O}} \mathrm{N}$	O^{N}	L	V／N	Кпәә¢！
						I	9tS ${ }^{\text {c }}$	
II			V／N	${ }^{0} \mathrm{~N}$	${ }^{0} \mathrm{~N}$	ZI	986 ${ }^{\text {c }}$	
4			V／N	${ }^{0} \mathrm{~N}$	${ }^{\mathrm{O}} \mathrm{N}$		V／N	
						I	608‘II	
II			V／N	${ }^{0} \mathrm{~N}$	${ }^{\mathrm{O}} \mathrm{N}$	ZI	680＇01	
II			V／N	O^{N}	O^{N}	II	0t0‘61	
						t	088＇SZ	
II			V／N	${ }^{0} \mathrm{~N}$	${ }^{0} \mathrm{~N}$	ZI	カ69＇SI	$\begin{array}{r} \text { u!seg K!!u! } \\ \text { Kәueכ } \\ \hline \end{array}$
II			V／N	${ }^{\mathrm{O}} \mathrm{N}$	${ }^{0} \mathrm{~N}$	II	0Z£＇ZI	
	งұшәшшоว	翟		sexəL Z00Z әழ u！̣ Ә！！̣ әnb！̣un рәриәшшоэәу		20 0 0 0 0 0		
						S	ZII＇L66	
						ZI	Z08‘50t	
$\begin{gathered} \hline \mathrm{II} \\ { }^{\prime} \end{gathered}$	 גəی！̣y 	9	0L6I U！0＊60S\＄	${ }^{\mathrm{O}} \mathrm{N}$	${ }^{0} \mathrm{~N}$	†	Z6t＇S0t	
						S	00¢‘89	

Region H
Table 3E: Previously Studied Potential Reservoir Sites

Navasota Brazos Basin	N/A				\$196 in 1968	7	Original site had 58,180 acres of affected area. This location is now in the tailwater of the proposed Millican-Bundic Crossing Reservoir.	7
Nelsons Trinity Basin	17,936	12	No	No	N/A		Site is listed in the Trinity River Basin Master Plan. Alternative site in the 1997 Texas Water Plan.	11
	8,849	1						
Oak Knoll Brazos Basin	N/A		No	No	N/A		Original site had 4,302 acres of affected area. This location is now in the tailwater of the proposed Millican-Bundic Crossing Reservoir.	7
Spring Creek Lake San Jacinto Basin	7,500		No	No	N/A			7
	26,900	4						
Upper Keechi Trinity Basin	15,694	12	No	No	N/A		Site is listed in the Trinity River Basin Master Plan. Alternative site in the 1997 Texas Water Plan.	11
	16,317	1						
Upper Lake Creek San Jacinto Basin			No	No	N/A		Alternative site in the 1997 Texas Water Plan.	

[^1]
Appendix 3F

Water Quality Basin Maps

This Page Intentionally Left Blank

Explanation of
 Water Quality Indicator Icons Used on the Basin Maps

Basin maps are provided as a quick reference to the general location of classified segments within the basin. Icons are used to indicate the presence of threatened, partially supported, and nonsupported designated uses and water quality concerns.

Conceptual Icon

Blue bar identifies segment number

Internal symbol identifies indicator used to assess a use or concern

Border color indicates level of use support or presence of water quality concern. Green $=$ threatened use, yellow = partially supported use, red $=$ nonsupported use, and orange $=$ water quality concern.

Icons for Designated Uses

Aquatic Life

A specific subcategory of aquatic life use (exceptional, high, intermediate, limited, or minimal) is assigned to each water body for protection and propagation of desirable fish, benthic macroinvertebrates, and other aquatic biota. Support of the use is determined by four indicators (dissolved oxygen criteria, acute and chronic toxic substances in water criteria, ambient water and sediment toxicity test results, and fish and macrobenthos data).

Contact Recreation

The contact recreation use is assigned to water bodies where recreational activities including wading by small children, swimming, water skiing, diving, and surfing commonly occur. Support of the use is determined by bacterial indicators (fecal coliform or E. coli).

Noncontact Recreation

A noncontact recreation use is primarily assigned to water bodies where ship and barge traffic or other activities make contact recreation unsafe. Recreational activities such as boating that do not involve a significant risk of water ingestion are allowed. Support of the use is determined by bacterial indicators (fecal coliform or E. coli).

General Use

Water temperature, pH , chloride, sulfate, total dissolved solids and enterococci bacteria indicators are used to determine support of general water quality, rather than a specific use.

Fish Consumption

The fish consumption use is assigned to all water bodies to ensure that fish and shellfish is safe for human consumption. Support of the use is determined by human health criteria in water (to protect against bioacumulation of toxic substances) and issuance of consumption advisories and aquatic life closures by the Texas Department of Health.

Oyster Waters

The oyster waters use is assigned to estuarine water bodies that are suitable for harvesting shellfish. Support of the use is determined from maps developed by the Texas Department of Health that depict the classification of shellfish growing areas.

Public Water Supply

A public water supply use is assigned to all water bodies that are used as a supply for public drinking water. The use is designed to ensure that finished drinking water (after treatment) is safe for consumption. Primary organic substances in finished drinking water is the indicator used to determine support of the use.

Icons for Water Quality Concerns

Nutrient Enrichment

Elevated concentrations of nutrients from point and nonpoint sources may contribute to excessive eutrophication in a water body. Nutrient enrichment concerns are determined by four indicators (ammonia and nitrite + nitrate nitrogen, orthophosphorus, and total phosphorus). Statewide $85^{\text {th }}$ percentile concentrations by water body type are used to identify water bodies with nutrient enrichment concerns.

Chlorophyll a

Elevated concentrations of chlorophyll a signal potential problems associated with excessive algal growths. Algal blooms may occur in response to elevated nutrient concentrations. Statewide $85^{\text {th }}$ percentile concentrations by water body type are used to identify water bodies with chlorophyll a concerns.

Fish Tissue

Elevated concentrations metals and organic substances in fish tissue signal potential health risks to humans and other organisms that consume fish in their diets. Screening levels slightly below those used by the Texas Department of Health to establish consumption advisories are used to identify fish consumption concerns.

Sediment

Elevated concentrations of metals and organic substances in sediment may contribute to water quality problems when they are re-suspended by wind activity and spring and fall overturn in deep reservoirs. Metals in sediment may be released into the water column when changes in pH occur near the sedimentwater interface. Contaminated sediments may also affect small creatures such as worms, crustaceans, and insect larvae that live directly in the bottoms of water bodies. Statewide $85^{\text {th }}$ percentile concentrations by water body type, threshold effects levels (TELS), and probable effect levels (PELS), are indicators used to identify sediment concerns.

Narrative Criteria

Narrative criteria concerns are identified in water bodies where activities or substances impair taste, odor, color, and other aesthetic qualities.

Appendix 3G

Region H Recreational

 Use Information
This Page Intentionally Left Blank

Region H
Table 3G-1: River Segments, Bays and Estuaries

Segment	Recreation ${ }^{1}$	Aquatic Life	Water Supply	Uses	Boating \& Water Sports	Camping \& Picnicking	Fishing	Hunting	Nature \& Wildlife Viewing	Restrooms \& Showers	Campsite Sewage	Visitor Center
Neches-Trinity Coastal Basin												
702 Intracoastal Waterway Tidal	Contact	High		Navigation								
Trinity River Basin												
801 Trinity River Tidal	Contact	High		B	+	+			+			
802 Trinity River below Lake Livingston	Noncontact	High	Public	B, Sp	+	+			+			
803 Lake Livingston	Contact	High	Public	E, Mun, In, Ir, Rec	+	+	+		+	r/s	D	
804 Trinity River above Lake Livingston	Noncontact	High		E, Sp	+	+			+			
Trinity-San Jacinto Coastal Basin												
901 Cedar Bayou Tidal	Noncontact			Sufficient	S/R+		+		+			
902 Cedar Bayou aboveTidal	Noncontact	High	Public	Sufficient	S/R							
San Jacinto River Basin												
1001 San Jacinto River Tidal	Contact	High										
1002 Lake Houston	Contact	High	Public	Mun, In, Ir, Mi, Rec								
1003 East Fork San Jacinto River	Contact	High	Public		S/R+							
1004 West Fork San Jacinto River	Contact	High	Public		+	+						
1005 Houston Ship Channel/San Jacinto River Tidal	Noncontact	High		Sp		d+	-		+	r		+
1006 Houston Ship Channel Tidal	Noncontact		Industrial	Navigation, Sp		d+	-		+	r		+
1007 Houston Ship Channel/ Buffalo Bayou Tidal	Noncontact		Industrial	Navigation			-					
1008 Spring Creek	Noncontact	High	Public		S/R+							
1009 Cypress Creek	Noncontact	High	Public									
1010 Caney Creek	Contact	High	Public									
1011 Peach Creek	Noncontact	High	Public									
1012 Lake Conroe	Contact	High	Public	Mun, In, Mi								
1013 Buffalo Bayou Tidal	Noncontact	Intermediate			S/R+							
1014 Buffalo Bayou above Tidal	Noncontact	Limited			S/R+							
1015 Lake Creek	Contact	High	Public									
1016 Greens Bayou above Tidal	Noncontact	Limited										
1017 White Oak Bayou above Tidal	Noncontact	Limited										
San Jacinto-Brazos Coastal Basin												
1101 Clear Creek Tidal	Noncontact	High		Sufficient	S/R		-		+			
1102 Clear Creek above Tidal	Noncontact	High			S/R		-					
1103 Dickinson Bayou Tidal	Noncontact	High		Virgin Coastal Prairie					+			
1104 Dickinson Bayou above Tidal	Noncontact	Intermediate		Insufficient	S/R							
1105 Bastrop Bayou Tidal	Noncontact	High		Sufficient usually, B, Sp	S/R+		+	+	+			
1107 Chocolate Bayou Tidal	Contact	High			+							
1108 Chocolate Bayou above Tidal	Noncontact	High										
1109 Oyster Creek Tidal	Noncontact	High		Sufficient	S/R							
1110 Oyster Creek above Tidal	Noncontact	High	Public		S/R							

Region H
Table 3G-1: River Segments, Bays and Estuaries

	Segment	Recreation ${ }^{1}$	Aquatic Life	$\begin{aligned} & \hline \text { Water } \\ & \text { Supply } \\ & \hline \end{aligned}$	Uses	Boating \& Water Sports	Camping \& Picnicking	Fishing	Hunting	Nature \& Wildlife Viewing	Restrooms \& Showers	Campsite	Visitor Center
1111	Old Brazos River Channel Tidal	Contact	High										
1113	Armand Bayou Tidal	Noncontact	High		Unspoiled Vegetation, B	S/R				+			
Brazos River Basin													
1201	Brazos River Tidal	Contact	High	Public	B, E			-					
1202	Brazos River below Navasota River	Noncontact	High	Public	B, E, Sp		+	+		+	r/s	D	+
1209	Navasota River below Lake Limestone	Contact	High	Public	B	S/R				+			
1245	Upper Oyster Creek	Contact	Intermediate	Public									
1252	Lake Limestone	Contact	High	Public	Mun, In, Ir, Rec	+	+	+					
Brazos-Colorado Coatal Basin													
1301	San Bernard River Tidal	Noncontact	High		E, Rec, Sp			+	+	+			
1302	San Bernard River above Tidal	Contact	High		E, Rec, Sp					+			+
Bays and Estuaries													
2421	Upper Galveston Bay	Contact	High		Oyster Waters	+	+	-	+	+			
2422	Trinity Bay	Contact	High		Oyster Waters	+	+	+		+			
2423	East Bay	Contact	High		Oyster Waters	+		+		+			
2424	West Bay	Contact	High		Oyster Waters	+	+	+		+			
2425	Clear Lake	Noncontact	High			+	+						
2426	Tabbs Bay	Noncontact	High			+	+	.		+			
2427	San Jacinto Bay	Contact	High					-					
2428	Black Duck Bay	Contact	High					.					
2429	Scott Bay	Noncontact	High					.					
2430	Burnett Bay	Contact	High					-					
2431	Moses Lake	Contact	High			+				+			
2432	Chocolate Bay	Contact	High		Oyster Waters	+							
2433	Bastrop Bay/Oyster Lake	Contact	High		Oyster Waters	+							
2434	Christmas Bay	Contact	High		Oyster Waters	+	+	+					
2435	Drum Bay	Contact	High		Oyster Waters								
2436	Barbours Cut	Contact	High			+							
2437	Texas City Ship Channel	Noncontact	High			+		+		+			
2438	Bayport Channel	Noncontact	High			+		+					
2439	Lower Galveston Bay	Contact	High		Oyster Waters	+		+		+			
2442 CedarLakes 		Contact	High		Oyster Waters			+	+	+			

dump
For the specific feature refered to by the symbols (B, E, and Sp) above see Sheet "Special Features"
${ }^{1}$ The information used for this column was obtained from the Texas Commission for Environmental Quality "The State of Texas Water Quality Inventory: Surface Water Quality Monitoring Program" The complete bibliography is attached after the tables.

Table 3G-2: Recreational Areas

Appendix 3H

Current Water Supplies Available to Region H by City and Category

This Page Intentionally Left Blank

Appendix 31

Current Water Supplies Available to Region H by Wholesale Water Provider

This Page Intentionally Left Blank

WWP ${ }^{\text {Name }}{ }^{1}$	WWP Number	$\begin{aligned} & \text { Source } \\ & \text { RWPG } \\ & \hline \end{aligned}$	Source Wwp ${ }^{2}$	WWP Number	Source ID	Source Name	Supply (acre-feet per year)					
							2010	2020	2030	2040	2050	2060
BAYTOWN AREA WATER AUTHORITY	15	H	CITY OF HOUSTON	396200	084H0	LIVINGSTON-WALLSSVILLE SYSTEM	17,534	17,534	17,534	17,534	17,534	17,534
BRAZOS RIVER AUTHORITY	331	G	SELF SUPPLIED	331	120E0	BRAZOS RIVER AUTHORITY MAIN STEM STYSTEM	19,501	19,501	19,501	19,501	19,501	19,501
BRAZOSPORT WATER AUTHORITY	2000	H	SELF SUPPLIED	2000	3461205366	BRAZOS RIVER RUN-OF-RIVER	8,742	8,742	8,742	8,742	8,742	8,742
CHAMBERS LIBERTY COUNTIES NAVIGATIONAL DISTRICT	150	H	SELF SUPPLIED	150	${ }^{34608042798}$	TRINITY RIVER RUN-OF-RIVER	44,788	44,788	44,788	44,788	44,788	44,788
CHCRWA	999902	H	CITY OF HOUSTON	396200	10030	Houston Lakerreservoir	2,375	2,375	2,375	2,375	2,375	2,375
		H	SELF SUPPLIED	999902	10115	GULF COAST AQUIFER	3,246	1,930	1,287	1,287	1,287	1,287
CITY OF GALVESTON	316200	H	GULF COAST WATER AUTHORITY	325	3461205168	BRAZOS RIVER RUN-OF-RIVER	901	1,034	1,111	1,147	1,173	1,189
					3461205171	BRAZOS RIVER RUN-OF-RIVER	24,217	24,217	24,217	24,217	24,217	24,217
		H	SELF SUPPLIED	316200	08415	GULF COAST AQUIFER	1,610	1,590	1,571	1,552	1,539	1,539
CITY OF Houston	396200	H	SELF SUPPLIED	396200	07915	GULF COAST AQUIFER	2,857	2,294	1,513	1,513	1,513	1,513
					084H0	LIVINGSTON-WALLISVILLE SYSTEM	644,906	677,937	711,220	750,090	791,642	799,573
					10030	HOUSTON LAKERESERVOIR	103,868	103,868	103,868	103,868	103,868	103,868
					10115	GULF COAST AQUIFER	83,386	80,950	82,127	82,127	82,127	82,127
					17015	GULF COAST AQUIFER	178	178	178	178	178	178
					3460804277	TRINITY RIVER RUN-OF-RIVER	33,000	33,000	33,000	33,000	33,000	33,000
CITY OF HUNTSVILLE	410000	H	TRINITY RIVER AUTHORITY	187	084H0	LIVINGSTON-WALISVILLE SYSTEM	22,403	22,403	22,403	22,403	22,403	22,403
		H	SELF SUPPLIED	410000	23615	GULF COAST AQUIFER	5,283	5,264	5,237	5,205	5,183	5,164
CITY OF PASADENA	651900	H	CITY OF HOUSTON	396200	084H0	LIVIINGSTON-WALISVILLE SYSTEM	38,514	38,514	38,514	38,514	38,514	38,514
		H	SELF SUPPLIED	651900	10115	GULF COAST AQUIFER	2,047	2,047	2,047	2,047	2,047	2,047
CLEAR LAKE CITY WATER AUTHORITY	159000	H	CITY OF HOUSTON	396200	084H0	LIVINGSTON-WALLISVILLE SYSTEM	26,876	26,876	26,876	26,876	26,876	26,876
FORT BEND CO. WCID 1	380	H	FORT BEND CO. WCID 1	380	3461105170	SAN JACINTO-BRAZOS RIVER RUN-OF-RIVER	1,000	1,000	1,000	1,000	1,000	1,000
FORT BEND COUNTY WCID\#2	821000	H	SELF SUPPLIED	821000	07915	GULF COAST AQUIFER	2,075	1,431	808	799	796	796
			GULF COAST WATER AUTHORITY	325	3461205168	BRAZOS RIVER RUN-OF-RIVER	6,384	6,384	6,384	6,384	6,384	6,384
					3461205171	BRAZOS RIVER RUN-OF-RIVER	195	195	195	195	195	195
GALVESTON COUNTY WCID \#1	316325		GULF COAST WATER AUTHORITY		3461205168	BRAZOS RIVER RUN-OF-RIVER	2,091	2,091	2,091	2,091	2,091	2,091
			GULF COAST WATER AUTHORIT		3461205171	BRAZOS RIVER RUN-OF-RIVER	1,141	1,141	1,141	1,141	1,141	1,141
		H	SELF SUPPLIED	316325	08415	GULF COAST AQUIFER	309	309	309	309	309	309
GULF COAST WATER AUTHORITY	325	H	GULF COAST WATER AUTHORITY	325	3461105357 A	SAN JACINTO-BRAZOS RIVER RUN-OF-RIVER	13,541	13,541	13,541	13,541	13,541	13,541
					3461205168	BRAZOS RIVER RUN-OF-RIVER	58,773	58,773	58,773	58,773	58,773	58,773
					3461205171	BRAZOS RIVER RUN-OF-RIVER	35,530	35,530	35,530	35,530	35,530	35,530
					3461205322 B	BRAZOS RIVER RUN-OF-RIVER	34,063	34,063	34,063	34,063	34,063	34,063
		G	BRAZOS RIVER AUTHORITY	331	120E0	BRAZOS RIVER AUTHORITY MAIN STEM STYSTEM	38,260	38,260	38,260	38,260	38,260	38,260
LA PORTE AREA WATER AUTHORITY	1095	H	CITY OF HOUSTON	396200	084H0	LIVIINGSTON-WALISVILLE SYSTEM	9,750	9,750	9,750	9,750	9,750	9,750
LOWER NECHES VALLEY AUTHORITY	140	1	SELF SUPPLIED	140	060A0	SAM RAYBURN-STEINHAGEN LAKE/RESERVOIR SYSTEM	63,863	63,898	63,946	64,007	64,083	64,177
MISSOURI CITY	999903	H	GULF COAST WATER AUTHORITY	325	3461205168	BRAZOS RIVER RUN-OF-RIVER	9,672	9,663	9,659	9,656	9,658	9,645
		H	SELF SUPPLIED	999903	07915	GULF COAST AQUIFER	15,862	13,713	9,340	9,340	9,340	9,340
NFBWA	999901	H	CITY OF HOUSTON	396200	084H0	LIVINGSTON-WALLISVILLE SYSTEM	0	21,434	21,434	21,434	21,434	21,434
		H	SELF SUPPLIED	999901	07915	GULF COAST AQUIFER	33,373	32,083	26,332	26,332	26,332	26,332
		H	SELF SUPPLIED		10115	GULF COAST AQUIFER	1,636	470	311	311	311	311
NHCRWA	999904	H	CITY OF HOUSTON	396200	10030	HOUSTON LAKERESERVOIR	34,714	34,714	34,714	34,714	34,714	34,714
		H	SELF SUPPLIED	999904	10115	GULF COAST AQUIFER	81,243	41,071	30,558	30,558	30,558	30,558
NORTH CHANNEL WATER AUTHORITY	607473	H	CITY OF HOUSTON	396200	084H0	LIVINGSTON-WALISVILLE SYSTEM	6,682	6,682	6,682	6,682	6,682	6,682
		H	SELF SUPPLIED	607473	10115	GULF COAST AQUIFER	1,673	1,652	1,650	1,647	1,645	1,645
NRG	398300	G	BRAZOS RIVER AUTHORITY	331	120E0	BRAZOS RIVER AUTHORITY MAIN STEM STYSTEM	83,000	83,000	83,000	83,000	83,000	83,000
		H	NRG	398300	3460903926	TRINITY-SAN JACINTO RIVER RUN-OF-RIVER	30,000	30,000	30,000	30,000	30,000	30,000
					3461205320	BRAZOS RIVER RUN-OF-RIVER	12,000	12,000	12,000	12,000	12,000	12,000
					3461205325	BRAZOS RIVER RUN-OF-RIVER	28,711	28,711	28,711	28,711	28,711	28,711
RICHMOND-ROSENBERG	999905	G	BRAZOS RIVER AUTHORITY	331	120E0	BRAZOS RIVER AUTHORITY MAIN STEM STYSTEM	7,500	7.500	7.500	7.500	7,500	7,500
		H	SELF SUPPLIED	999905	07915	GULF COAST AQUIFER	7,408	6,111	4,279	4,279	4,279	4,279
SAN JACINTO RIVER AUTHORITY	240	H	SELF SUPPLIED	240	10060	CONROE LAKEIRESERVOIR	21,698	21,698	21,698	21,698	21,698	21,698
					17015	GULF COAST AQUIFER	11,303	11,294	11,279	11,041	8,974	7,359
					3410805271 B	TRINITY RIVER RUN-OF-RIVER	31,223	31,223	31,223	31,223	31,223	31,223
					3461004964	SAN JACINTO RIVER RUN-OF-RIVER	37,627	37,627	37,627	37,627	37,627	37,627
SUGAR LAND	999906	H	GULF COAST WATER AUTHORITY	325	3461205168	BRAZOS RIVER RUN-OF-RIVER	12,563	12,563	12,563	12,563	12,563	12,563
		H	SELF SUPPLIED	999906	07915	GULF COAST AQUIFER	20,281	17,020	9,974	9,927	9,927	9,027
THE DOW CHEMICAL CO.	237200	H	SELF SUPPLIED	237200	3461205328 B	BRAZOS RIVER RUN-OF-RIVER	137,475	137,475	137,475	137,475	137,475	137,475
TRINITY RIVER AUTHORITY	187	H	SELF SUPPLIED	187	084H0	LIVINGSTON-WALLISVILLE SYSTEM	41,016	41,009	41,009	41,012	41,017	41,021
WHCRWA	999907	H	CITY OF HOUSTON	396200	084H0	LIVINGSTON-WALLSVVILLE SYSTEM	20,437	20,437	20,437	20,437	20,436	20,437
		H	SELF SUPPLIED	999907	07915	GULF COAST AQUIFER	3,208	2,640	$\frac{1,740}{14.781}$	$\underline{1,740}$	$\stackrel{1,740}{14781}$	$\underline{1,740}$
					1015	GULF COAST AQUIFER	42,047	20,324	14,781	14,781	14,781	14,781

[^2]
Appendix 3J

Current Surface Water Supplies by Category of Use by Basin by Wholesale Water Provider

This Page Intentionally Left Blank

[^0]: ${ }^{1}$ The information contained in this portion of Chapter 3 was provided by LBG-Guyton Associates.

[^1]: 1986. Trinity River Yield Study Phase III: Yield Analysis. By Espey, Huston \& Associates, Inc.

 2 1988. San Jacinto River Authority Water Resources Development Plan-Water Supply Plan, Pate Engineers, Inc.
 31990 (Texas Parks \& Wildlife Dept.), and (U.S. Fish \& Wildlife Service). Texas Water and Wildlife. A Natural Resource Survey for
 41991. Houston Water Master Plan, Appendix L, Table 2-8, revised by Metcalf \& Eddy. 5 1996. Memorandum Report Updated Water Project Opinions of Cost. Freese and Nichols,

 6 1997. Trans-Texas Water Program Southeast Area, Operation Studies and Opinions of Cost for Allens Creek Reservoir Volume I - Text. 7 1997. Water for Texas, A Concensus-Based Update to the State Water Plan, TWDB 8 2001. Brazos G Regional Water Plan

 10 2001. Region H Water Plan
 12 Additional information collected in 1999 from River Authorities

[^2]: 1) WWPs with contracts to supply wholesale water directly to WUGs
 2) WWPs with contracts to supply another WWP
